浏览全部资源
扫码关注微信
1. 中国计量大学机电工程学院,浙江 杭州 310018
2. 国网金华供电公司,浙江 金华 321000
3. 浙江华云信息科技有限公司,浙江 杭州 310018
[ "卢子萌(1995- ),男,中国计量大学机电工程学院硕士生,主要从事电力系统大数据分析研究工作" ]
[ "陈佳怡(1993- ),女,国网金华供电公司工程师,主要从事营销服务与综合能源创新优化工作" ]
[ "李璟(1977- ),女,博士,中国计量大学机电工程学院副教授,主要从事数值分析、数据处理数据挖掘等算法研究工作" ]
[ "谢岳(1964- ),男,博士,中国计量大学机电工程学院教授,主要研究方向为检测技术与自动化装置" ]
[ "蒋欣利(1993- ),男,国网金华供电公司助理工程师,主要从事营销计量与大数据分析工作" ]
[ "韩蕾(1979- ),女,浙江华云信息科技有限公司中级工程师,主要从事电力营销信息化工作" ]
[ "郭倩(1987- ),女,博士,中国计量大学机电工程学院讲师,主要从事电力新能源分布式发电及控制技术与电力大数据分析工作" ]
网络出版日期:2020-08,
纸质出版日期:2020-08-20
移动端阅览
卢子萌, 陈佳怡, 李璟, 等. 基于加权随机森林算法的空巢电力用户识别方法[J]. 电信科学, 2020,36(8):112-121.
Zimeng LU, Jiayi CHEN, Jing LI, et al. An empty-nest power user identification method based on weighted random forest algorithm[J]. Telecommunications science, 2020, 36(8): 112-121.
卢子萌, 陈佳怡, 李璟, 等. 基于加权随机森林算法的空巢电力用户识别方法[J]. 电信科学, 2020,36(8):112-121. DOI: 10.11959/j.issn.1000-0801.2020249.
Zimeng LU, Jiayi CHEN, Jing LI, et al. An empty-nest power user identification method based on weighted random forest algorithm[J]. Telecommunications science, 2020, 36(8): 112-121. DOI: 10.11959/j.issn.1000-0801.2020249.
针对当前政府和社会对空巢老人的识别缺乏有效技术手段的问题,提出了一种基于加权随机森林算法的空巢电力用户识别方法。首先通过调查问卷获取部分准确空巢用户标签,并从用电水平、用电波动、用电趋势 3 个方面构建用户用电特征库,由于空巢与非空巢存在用户数据不平衡问题,采用加权随机森林算法改善机器学习对数据敏感的现象,将该算法模型在电力公司采集系统部署上线,并对2 000户未知类型用户进行空巢识别,其空巢识别准确率达到 74.2%。结果表明,从用电角度研究对空巢老人的识别,可以帮助电网公司了解空巢老人的个性化、差异化需求,从而为用户提供更精细的服务,也可以协助政府和社会开展帮扶工作。
In view of the lack of effective technical means for the identification of empty-nesters by the government and the society
an empty-nesters prow user identification method based on weighted random forest algorithm was proposed.Firstly
some accurate labels of empty-nest users were obtained through questionnaires
and electricity characteristic library was drawn from three aspects:electricity consumption level
electricity consumption fluctuation and electricity consumption trend.Due to the data imbalance between empty-nest and non-empty-nest users
the weighted random forest algorithm was used to improve the data sensitivity phenomenon of machine learning.Finally
the algorithm model was put online in the power company’s acquisition system.The 2 000 unknown users of various types were identified
among which the identification accuracy of empty-nest users was 74.2%.The results show that the identification of empty-nesters from the perspective of electricity consumption can help power grid companies to understand the personalized and differentiated needs of empty-nesters
so as to provide users with more sophisticated services
and also assist the government and society to carry out assistance work.
翟振武 , 陈佳鞠 , 李龙 . 2015—2100 年中国人口与老龄化变动趋势 [J ] . 人口研究 , 2017 , 41 ( 4 ): 60 - 71 .
ZHAI Z W , CHEN J J , LI L . Future trends of China’s population and aging:2015—2100 [J ] . Population Research , 2017 , 41 ( 4 ): 60 - 71 .
冯先成 , 李寒 , 周密 , 等 . 基于前馈神经网络的智慧城市空巢老人识别 [J ] . 武汉工程大学学报 , 2015 , 37 ( 10 ): 33 - 39 .
FENG X C , LI H , ZHOU M , et al . Recognition of empty-nest elders in intelligent city based on feedforward neural network [J ] . Journal of Wuhan Institute of Technology , 2015 , 37 ( 10 ): 33 - 39 .
崔瀚文 , 栾石圳南 , 李远帆 , 等 . 空巢老人手机用户的精准识别 [J ] . 数学建模及其应用 , 2014 , 3 ( 1 ): 49 - 62 .
CUI H W , LUAN S Z N , LI Y F , et al . Accurate identification approach to empty-nester mobile-phone users [J ] . Mathematical Modeling and its Applications , 2014 , 3 ( 1 ): 49 - 62 .
吴郅君 , 殷新博 , 陈中 , 等 . 基于模糊聚类曲线相似度的负荷用户识别方法 [J ] . 电力工程技术 , 2019 , 38 ( 3 ): 151 - 156 .
WU Z J , YIN X B , CHEN Z , et al . Identification method of load customers based on similarity of fuzzy clustering curves [J ] . Electric Power Engineering Technology , 2019 , 38 ( 3 ): 151 - 156 .
和敬涵 , 卢育梓 , 陆金耀 , 等 . 基于“进化”主成分分析法的用户分类及其应用 [J ] . 电力建设 , 2017 , 38 ( 3 ): 101 - 107 .
HE J H , LU Y Z , LU J Y , et al . User classification method based on ‘evolution’ PCA and its application [J ] . Electric Power Construction , 2017 , 38 ( 3 ): 101 - 107 .
辛苗苗 , 张延迟 , 解大 . 基于电力大数据的用户用电行为分析研究综述 [J ] . 电气自动化 , 2019 , 41 ( 1 ): 1 - 4 ,27.
XIN M M , ZHANG Y C , XIE D . Summary of researches on consumer behavior analysis based on big power data [J ] . Electrical Automation , 2019 , 41 ( 1 ): 1 - 4 ,27.
李如初 , 沈名龙 , 彭海棠 . 大数据、云计算在电力工业中的应用 [J ] . 电信科学 , 2018 , 34 ( 4 ): 151 - 155 .
LI R C , SHEN M L , PENG H T . Application of big data and cloud computing in power industry [J ] . Telecommunications Science , 2018 , 34 ( 4 ): 151 - 155 .
谷红勋 , 杨珂 . 基于大数据的移动用户行为分析系统与应用案例 [J ] . 电信科学 , 2016 , 32 ( 3 ): 139 - 146 .
GU H X , YANG K . Mobile user behavior analysis system and applications based on big data [J ] . Telecommunications Science , 2016 , 32 ( 3 ): 139 - 146 .
王志宏 , 杨震 . 人工智能技术研究及未来智能化信息服务体系的思考 [J ] . 电信科学 , 2017 , 33 ( 5 ): 1 - 11 .
WANG Z H , YANG Z . Research on artificial intelligence technology and the future intelligent information service architecture [J ] . Telecommunications Science , 2017 , 33 ( 5 ): 1 - 11 .
蔡一鸣 . 几种方差概念的比较 [J ] . 统计与信息论坛 , 2008 ( 4 ): 20 - 22 .
CAI Y M . Comparison on diverse concepts of variances [J ] . Statistics & Information Forum , 2008 ( 4 ): 20 - 22 .
张棪 , 曹健 . 面向大数据分析的决策树算法 [J ] . 计算机科学 , 2016 , 43 ( S1 ): 374 - 379 ,383.
ZHANG Y , CAO J . Decision tree algorithms for big data analysis [J ] . Computer Science 2016 , 43 ( S1 ): 374 - 379 ,383.
孙梦婷 , 魏海平 , 李星滢 , 等 . 利用 CART 分类树分类检测交通拥堵点 [J ] . 武汉大学学报(信息科学版) , 2019 ( 11 ): 1 - 10 .
SUN M T,WEI H X , LI X Y , el at . Detection and classification of traffic congestion points using CART classification tree [J ] . Geomatics and Information Science of Wuhan University , 2019 ( 11 ): 1 - 10 .
刘玉茹 , 赵成萍 , 臧军 , 等 . CART分析及其在故障趋势预测中的应用 [J ] . 计算机应用 , 2017 , 37 ( S2 ): 57 - 59 ,73.
LIU Y R , ZHAO C P , ZANG J , et al . Analysis of CART regression tree and its application in fault trend forecasting [J ] . Journal of Computer Applications , 2017 , 37 ( S2 ): 57 - 59 ,73.
XU Z Y , KANG Y , CAO Y , et al . Man-machine verification of mouse trajectory based on the random forest model [J ] . Frontiers of Information Technology & Electronic Engineering , 2019 , 20 ( 7 ): 925 - 929 .
刘亚丽 , 李国栋 , 刘云 , 等 . 基于随机森林的电动汽车充电行为聚类技术研究 [J ] . 电力工程技术 , 2019 , 38 ( 6 ): 115 - 121 .
LIU Y L , LI G D , LIU Y , et al . Clustering technology of electric vehicle charging behavior based on random forest [J ] . Electric Power Engineering Technology , 2019 , 38 ( 6 ): 115 - 121 .
吴涛 , 刘韬 , 王斌 . 安徽联通企业级大数据平台构建及应用实践 [J ] . 电信科学 , 2018 , 34 ( 1 ): 135 - 147 .
WU T , LIU T , WANG B . Construction and application of Anhui Unicom enterprise big data platform [J ] . Telecommunications Science , 2018 , 34 ( 1 ): 135 - 147 .
王铮 , 任华 , 方燕萍 . 随机森林在运营商大数据补全中的应用 [J ] . 电信科学 , 2016 , 32 ( 12 ): 7 - 12 .
WANG Z , REN H , FANG Y P . Application of random forest in big data completion [J ] . Telecommunications Science , 2016 , 32 ( 11 ): 7 - 12 .
王德文 , 孙志伟 . 电力用户侧大数据分析与并行负荷预测 [J ] . 中国电机工程学报 , 2015 , 35 ( 3 ): 527 - 537 .
WANG D W , SUN Z W . Big data analysis and parallel load forecasting of electric power user side [J ] . Proceedings of the CSEE , 2015 , 35 ( 3 ): 527 - 537 .
李艳霞 , 柴毅 , 胡友强 , 等 . 不平衡数据分类方法综述 [J ] . 控制与决策 , 2019 , 34 ( 4 ): 673 - 688 .
LI Y X , CHAI Y , HU Y Q , et al . Review of imbalanced data classification methods [J ] . Control and Decision , 2019 , 34 ( 4 ): 673 - 688 .
张宏莉 , 鲁刚 . 分类不平衡协议流的机器学习算法评估与比较 [J ] . 软件学报 , 2012 , 23 ( 6 ): 1500 - 1516 .
ZHANG H L , LU G . Machine learning algorithms for classifying the imbalanced protocol flows:evaluation and comparison [J ] . Journal of Software , 2012 , 23 ( 6 ): 1500 - 1516 .
吴成东 , 卢紫微 , 于晓升 . 基于加权随机森林的图像超分辨率算法研究 [J ] . 控制与决策 , 2019 , 34 ( 10 ): 2243 - 2248 .
WU C D , LU Z W , YU X S . Image super resolution reconstruction algorithm based on weighted random forest [J ] . Control and Decision , 2019 , 34 ( 10 ): 2243 - 2248 .
魏正韬 , 杨有龙 , 白婧 . 基于非平衡数据的随机森林分类算法改进 [J ] . 重庆大学学报 , 2018 , 41 ( 4 ): 54 - 62 .
WEI Z T , YANG Y L , BAI J . An improved random forest algorithm based on unbalanced data [J ] . Journal of Chongqing University , 2018 , 41 ( 4 ): 54 - 62 .
彭徵 , 王灵矫 , 郭华 . 基于随机森林的文本分类并行化 [J ] . 计算机科学 , 2018 , 45 ( 12 ): 148 - 152 .
PENG Z , WANG L J , GUO H . Parallel text categorization of random forest [J ] . Computer Science , 2018 , 45 ( 12 ): 148 - 152 .
常玉清 , 孙雪婷 , 钟林生 , 等 . 基于改进随机森林算法的工业过程运行状态评价 [J ] . 自动化学报 , 2019 ( 11 ): 1 - 10 .
CHANG Y Q , SUN X T , ZHONG L S , et al . Industrial operation performance evaluation of industrial processes based on modified random forest [J ] . Acta Automatica Sinica , 2019 ( 11 ): 1 - 10 .
姜红红 , 张涛 , 赵新建 , 等 . 基于大数据的电力信息网络流量异常检测机制 [J ] . 电信科学 , 2017 , 33 ( 3 ): 134 - 141 .
JIANG H H , ZHANG T , ZHAO X J , et al . A big data based flow anomaly detection mechanism of electric power information network [J ] . Telecommunications Science , 2017 , 33 ( 3 ): 134 - 141 .
0
浏览量
512
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构