浏览全部资源
扫码关注微信
[ "刘姿杉(1992- ),女,博士,中国信息通信研究院工程师,主要研究方向为人工智能、宽带接入、数据安全隐私等" ]
[ "程强(1977- ),男,中国信息通信研究院高级工程师,主要研究方向为人工智能、宽带接入、家庭网络等" ]
[ "吕博(1981- ),男,博士,中国信息通信研究院高级工程师,主要研究方向为人工智能、量子计算、高精度时间同步等" ]
网络出版日期:2020-11,
纸质出版日期:2020-11-20
移动端阅览
刘姿杉, 程强, 吕博. 面向机器学习的隐私保护关键技术研究综述[J]. 电信科学, 2020,36(11):18-27.
Zishan LIU, Qiang CHENG, Bo LV. A survey on key technologies of privacy protection for machine learning[J]. Telecommunications science, 2020, 36(11): 18-27.
刘姿杉, 程强, 吕博. 面向机器学习的隐私保护关键技术研究综述[J]. 电信科学, 2020,36(11):18-27. DOI: 10.11959/j.issn.1000-0801.2020283.
Zishan LIU, Qiang CHENG, Bo LV. A survey on key technologies of privacy protection for machine learning[J]. Telecommunications science, 2020, 36(11): 18-27. DOI: 10.11959/j.issn.1000-0801.2020283.
随着信息通信技术的发展,机器学习已经成为多个研究领域与垂直行业必不可少的技术工具。然而,机器学习所需数据中往往包含了大量的个人信息,使其隐私保护面临风险与挑战,受到了越来越多的关注。对现有机器学习下隐私保护法规政策与标准化现状进行梳理,对适用于机器学习的隐私保护技术进行详细介绍与分析。隐私保护算法通常会对数据质量、通信开支与模型表现等造成影响,因此对于隐私保护算法的评估应当进行多维度的综合评估。总结了适用于机器学习应用的隐私保护性能评估指标,并指出隐私保护需要考虑对数据质量、通信开支以及模型准确率等之间的影响。
With the development of information and communication technology
large-scale data collection has vastly promoted the application of machine learning in various fields.However
the data involved in machine learning often contains a lot of personal private information
which makes privacy protection face new risks and challenges
and has attracted more and more attention.The current progress of the related laws
regulations and standards to the personal privacy protection and data safety in machine learning were summarized.The existing work on privacy protection for machine learning was presented in detail.Privacy protection algorithms usually have influence on the data quality
model performance and communication cost.Thus
the performance of the privacy protection algorithms should be comprehensively evaluated in multiple dimensions.The performance evaluation metrics for the privacy protection algorithms for machine learning were presented
given with the conclusion that the privacy preservation on machine learning needs to balance the data quality
model convergence rate and communication cost.
LANGHEINRICH M . Privacy in ubiquitous computing [J ] . Ubiquitous Computing Fundamentals , 2009 ( 3 ): 95 - 159 .
United Nation General Assembly . Universal declaration of human rights [EB ] . 2020 .
BERTINO E , LIN D , JIANG W . A survey of quantification of privacy preserving data mining algorithms [M ] // Privacy- preserving data mining . Berlin:Springer , 2008 : 183 - 205 .
宋蕾 , 马春光 , 段广晗 . 机器学习安全及隐私保护研究进展 [J ] . 网络与信息安全学报 , 2018 , 4 ( 8 ): 1 - 11 .
SONG L , MA C G , DUAN G H . Machine learning security and privacy:a survey [J ] . Chinese Journal of Network and Information Security , 2018 , 4 ( 8 ): 1 - 11 .
赵镇东 , 常晓林 , 王逸翔 . 机器学习中的隐私保护综述 [J ] . 信息安全学报 , 2019 , 4 ( 5 ): 1 - 13 .
ZHAO Z D , CHANG X L , WANG Y X . A survey of privacy preserving in machine learning [J ] . Journal of Cyber Security , 2019 , 4 ( 5 ): 1 - 13 .
ROUANI B D , SAMRAGH M , JACIDI T , et al . Safe machine learning and defeating adversarial attacks [J ] . IEEE Security &Privacy , 2019 , 17 ( 2 ): 31 - 38 .
AL-RUBAIE M , CHANG J M . Privacy-preserving machine learning:threats and solutions [J ] . IEEE Security & Privacy , 2019 , 17 ( 2 ): 49 - 58 .
刘俊旭 , 孟小峰 . 机器学习的隐私保护研究综述 [J ] . 计算机研究与发展 , 2020 , 57 ( 2 ): 346 - 362 .
LIU J X , MENG X F . Survey on privacy-preserving machine learning [J ] . Journal of Computer Research and Development , 2020 , 57 ( 2 ): 346 - 362 .
SWEENEY L . K-anonymity:a model for protecting privacy [J ] . International Journal of Uncertainty,Fuzziness and Knowledge-Based Systems , 2002 , 10 ( 5 ): 557 - 570 .
MACHANAVAJJHALA A , KIFER D , GEHRKE J , et al . L-diversity:privacy beyond k-anonymity [J ] . ACM Transactions on Knowledge Discovery from Data (TKDD) , 2007 , 1 ( 1 ):3.
LI N , LI T , VENKATASUBRAMANIAN S . T-closeness:privacy beyond k-anonymity and l-diversity [C ] // Proceedings of 2007 IEEE 23rd International Conference on Data Engineering . Piscataway:IEEE Press , 2007 : 106 - 115 .
DWORK C , MCSHERRY F , NIAIIM K , et al . Calibrating noise to sensitivity in private data analysis [C ] // Proceedings of Theory of Cryptography Conference . Berlin:Springer , 2006 .
DWORK C , SMITH A , STEINKE T , et al . Exposed! a survey of attacks on private data [J ] . Annual Review of Statistics and its Application , 2017 : 61 - 84 .
XU C , REN J , ZHANG D , et al . GANobfuscator:mitigating information leakage under GAN via differential privacy [J ] . IEEE Transactions on Information Forensics and Security , 2019 , 14 ( 9 ): 2358 - 2371 .
PHAN N H , WANG Y , WU X , et al . Differential privacy preservation for deep auto-encoders:an application of human behavior prediction [C ] // Proceedings of Thirtieth AAAI Conference on Artificial Intelligence . Palo Alto:AAAI Press , 2016 .
JAYARAMAN B , EVANS D . When relaxations go bad:“differentially-private” machine learning [J ] . arXiv:1902.08874 , 2019
RIVEST R L , ADLEMAN L , DERTOUZOS M L . On data banks and privacy homomorphisms [J ] . Foundations of Secure Computation , 1978 , 4 ( 11 ): 169 - 180 .
LI T , SAHU A K , TALWALKAR A , et al . Federated learning:challenges,methods,and future directions [J ] . arXiv:1908.07873 , 2019
NASR M , SHOKRI R , HOUMANSADDR A . Comprehensive privacy analysis of deep learning:stand-alone and federated learning under passive and active white-box inference attacks [J ] . arXiv:1812.00910 , 2018
YAO A C , . Protocols for secure computations [C ] // Proceedings of 23rd Annual Symposium on Foundations of Computer Science . Piscataway:IEEE Press , 1982 : 160 - 164 .
KESDOGAN D , EGNER J , BUSCHKES R . Stop-and-goMIXes providing probabilistic anonymity in an open system [C ] // Proceedings of International Workshop on Information Hiding . Berlin:Springer , 1998 : 83 - 98 .
SERIGANTOV A , DANEZIS G . Towards an information theoretic metric for anonymity [C ] // Proceedings of International Workshop on Privacy Enhancing Technologies . Berlin:Springer , 2002 : 41 - 53 .
DIAZ C , . Towards measuring anonymity [C ] // Proceedings of International Workshop on Privacy Enhancing Technologies,Berlin:Springer , 2002 .
OLIVEIRA S R M , ZAIANE O R . Privacy preserving clustering by data transformation [J ] . Journal of Information and Data Management , 2010 , 1 ( 1 ): 37 - 37 .
DIAZ C , TRONCOSO C , DANEZIS G . Does additional information always reduce anonymity? [C ] // Proceedings of the 2007 ACM Workshop on Privacy in Electronic Society . New York:ACM Press , 2007 : 72 - 75 .
AGRAWAL R , SRIKANT R . Privacy-preserving data mining [C ] // Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data . New York:ACM Press , 2000 : 439 - 450 .
BAYARDO R J , AGRAWAL R . Data privacy through optimal k-anonymization [C ] // Proceedings of 21st International Conference on Data Engineering (ICDE’05) . Piscataway:IEEE Press , 2005 : 217 - 228 .
OLIVEIRA S R M , ZAIANE O R . Privacy preserving frequent itemset mining [C ] // Proceedings of the IEEE International Conference on Privacy,Security and Data Mining-Volume 14.[S.l:s.n . ] , 2002 : 43 - 54 .
DENG Y , PANG J , WU P . Measuring anonymity with relative entropy [C ] // Proceedings of International Workshop on Formal Aspects in Security and Trust . Berlin:Springer , 2006 : 65 - 79 .
LIN Z , HEWETT M , ALTMAN R B . Using binning to maintain confidentiality of medical data [C ] // Proceedings of the AMIA Symposium.[S.l.:s.n] . 2002 :454.
BONDI A B , . Characteristics of scalability and their impact on performance [C ] // Proceedings of the 2nd International Workshop on Software and Performance.[S.l.:s.n] . 2000 : 195 - 203 .
LU Y , HUANG X , DAI Y , et al . Blockchain and federated learning for privacy-preserved data sharing in industrial IoT [J ] . IEEE Transactions on Industrial Informatics , 2019 , 16 ( 6 ): 4177 - 4186 .
KANG J , XIONG Z , NIYATO D , et al . Reliable federated learning for mobile networks [J ] . IEEE Wireless Communications , 2020 , 27 ( 2 ): 72 - 80 .
0
浏览量
1148
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构