浏览全部资源
扫码关注微信
[ "李坤(1995- ),男,东南大学移动通信国家重点实验室硕士生,主要研究方向为无线通信物理层技术与深度学习结合" ]
[ "张静(1993- ),女,东南大学移动通信国家重点实验室博士生,主要研究方向为 5G移动通信物理层关键技术、机器学习等" ]
[ "李潇(1982- ),女,东南大学移动通信国家重点实验室副教授、硕士生导师,主要研究方向为移动通信理论与关键技术、人工智能在无线通信中的应用等" ]
[ "金石(1974- ),男,东南大学移动通信国家重点实验室教授、博士生导师,主要研究方向为移动通信理论与关键技术、物联网理论与关键技术以及人工智能在无线通信中的应用等" ]
网络出版日期:2020-10,
纸质出版日期:2020-10-20
移动端阅览
李坤, 张静, 李潇, 等. 人工智能辅助的信道估计最新研究进展[J]. 电信科学, 2020,36(10):46-55.
Kun LI, Jing ZHANG, Xiao LI, et al. An overview of artificial intelligence assisted channel estimation[J]. Telecommunications science, 2020, 36(10): 46-55.
李坤, 张静, 李潇, 等. 人工智能辅助的信道估计最新研究进展[J]. 电信科学, 2020,36(10):46-55. DOI: 10.11959/j.issn.1000-0801.2020288.
Kun LI, Jing ZHANG, Xiao LI, et al. An overview of artificial intelligence assisted channel estimation[J]. Telecommunications science, 2020, 36(10): 46-55. DOI: 10.11959/j.issn.1000-0801.2020288.
作为第六代移动通信发展的主流方向,智能通信正在蓬勃发展中,且初步展示了其与传统通信方法相比的优势。人工智能辅助的信道估计作为智能通信的重要组成,在已有的研究成果中展示了其相比传统信道估计算法的优越性,尤其是基于压缩感知技术、超分辨技术、残差学习等开展的信道估计研究均获得了丰硕的成果。针对人工智能辅助的信道估计技术,结合近来学术界最新研究成果,分别从基于深度卷积神经网络、基于深度循环神经网络、基于超分辨技术、基于压缩感知技术 4 个维度展示了人工智能辅助的信道估计的全貌。最后,对比总结了4类信道估计方法优劣及其未来研究方向,展望了信道估计与深度学习结合的广阔前景。
As the mainstream of the sixth generation mobile communication development
intelligent communication assisted by artificial intelligence technology is vigorously developing
and has initially demonstrated its advantages over traditional communication methods.As an important component of intelligent communication
artificial intelligence assisted channel estimation shows its superiority over traditional channel estimation algorithms in the existing research results
especially those researches based on compressive sensing technology
super resolution technology
residual learning
etc.Aiming at the channel estimation technology assisted by artificial intelligence
combined with the latest research results in the academic field
the whole picture of the channel estimation technology assisted by artificial intelligence from the four dimensions of deep convolution neural network
deep recurrent neural network
super-resolution technology and compression sensing technology were showed.Finally
the advantages and disadvantages of four kinds of channel estimation methods and their future research directions
and the broad prospect of the combination of channel estimation and deep learning were looked forward.
ZENG Y , NG T . A semi-blind channel estimation method for multiuser multiantenna OFDM systems [J ] . IEEE Transactions on Signal Processing , 2004 , 52 ( 5 ): 1419 - 1429 .
DORNER S , CAMMERER S , HOYDIS J , et al . Deep learning based communication over the air [J ] . IEEE Journal of Selected Topics in Signal Processing , 2018 , 12 ( 1 ): 132 - 143 .
HE Y , ZHANG J , WEN C , et al . TurboNet:amodel-driven DNN decoder based on max-log-MAP algorithm for turbo code [C ] // IEEE VTS Asia Pacific Wireless Communications Symposium,Piscataway:IEEE Press , 2019 : 1 - 5 .
WEN C , SHIH W , JIN S . Deep learning for massive MIMO CSI feedback [J ] . IEEE Wireless Communications Letters , 2018 , 7 ( 5 ): 748 - 751 .
GAO X , JIN S , WEN C , et al . ComNet:combination of deep learning and expert knowledge in OFDM receivers [J ] . IEEE Communications Letters , 2018 , 22 ( 12 ): 2627 - 2630 .
SCHMIDHUBER J . Deep learning in neural networks:an overview [J ] . Neural Networks , 2015 ( 61 ): 85 - 117 .
DING C , LOY C C , HE K , et al . Learning a deep convolutional network for image super-resolution [C ] // Proceedings of ECCV . Cham:Springer , 2014 : 184 - 199 .
KIM J , LEE J K , LEE K M . Accurate image super-resolution using very deep convolutional networks [C ] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,Piscataway:IEEE Press , 2016 : 1646 - 1654 .
KIM J , LEE J K , LEE K M . Deeply-recursive convolutional network for image super-resolution [C ] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2016 : 1637 - 1645 .
LIM B,SON S , KIM H , NAH S , et al . Enhanced deep residual networks for single image super-resolution [C ] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops . Piscataway:IEEE Press , 2017 : 1132 - 1140 .
LEDIG C , THEIS L , HUSZAR F , et al . Photo-realistic single image super-resolution using a generative adversarial network [C ] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2017 : 105 - 114 .
DONOHO D L . Compressed sensing [J ] . IEEE Transactions on Information Theory , 2006 , 52 ( 4 ): 1289 - 1306 .
FOUCART S , RAUHUT H . A mathematical introduction to compressive sensing [M ] . New York : Springer-VerlagPress , 2013 .
MOUSAVI A , PATEL A B , BARANIUK R G . A deep learning approach to structured signal recovery [C ] // Proceedings of 53rd Annual Allerton Conference on Communication,Control,and Computing . Piscataway:IEEE Press , 2015 : 1336 - 1343 .
YAO H T , DAI F , ZHANG D M , et al . DR2-Net:deep residual reconstruction network for image compressive sensing [J ] . Neurocomputing , 2019 , 359 : 483 - 493 .
KULKARNI K , LOHIT S , TURAGA P , et al . ReconNet:non-iterative reconstruction of images from compressively sensed measurements [C ] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2016 : 449 - 458 .
DONG P , ZHANG H , LI G Y , et al . Deep CNN for wideband mmWave massive mimo channel estimation using frequency correlation [C ] // IEEE International Conference on Acoustics,Speech and Signal Processing . Piscataway:IEEE Press , 2019 : 4529 - 4533 .
JIN Y , ZHANG J , AI B , et al . Channel estimation for mmWave massive MIMO with convolutional blind denoising network [J ] . IEEE Communications Letters , 2020 , 24 ( 1 ): 95 - 98 .
BAI Q , WANG J , ZHANG Y , et al . Deep learning-based channel estimation algorithm over time selective fading channels [J ] . IEEE Transactions on Cognitive Communications and Networking , 2020 , 6 ( 1 ): 125 - 134 .
LIAO Y , HUA Y , DAI X , et al . ChanEstNet:adeep learning based channel estimation for high-speed scenarios [C ] // Proceedings of IEEE International Conference on Communications . Piscataway:IEEE Press , 2019 : 1 - 6 .
SHI Q , LIU Y , ZHANGS S , et al . Channel estimation for Wi-Fi prototype systems with super-resolution image recovery [C ] // Proceedings of IEEE International Conference on Communications . Piscataway:IEEE Press , 2019 : 1 - 6 .
SOLTANI M , POURAHMADI V , MIRZAEI A , et al . Deep learning-based channel estimation [J ] . IEEE Communications Letters , 2019 , 23 ( 4 ): 652 - 655 .
LI L , CHEN H , CHANG H , et al . Deep residual learning meets OFDM channel estimation [J ] . IEEE Wireless Communications Letters , 2020 , 9 ( 5 ): 615 - 618 .
HE H , WEN C K , JIN S , et al . Deep learning-based channel estimation for beamspace mmWave massive MIMO systems [J ] . IEEE Wireless Communications Letters , 2018 , 7 ( 5 ): 852 - 855 .
WEI Y , ZHAO M , ZHAO M , et al . An AMP-based network with deep residual learning for mmWave beamspace channel estimation [J ] . IEEE Wireless Communications Letters , 2019 , 8 ( 4 ): 1289 - 1292 .
MA W , QI C , ZHANG Z , et al . Deep learning for compressed sensing based channel estimation in millimeter wave massive MIMO [C ] // Proceedings of International Conference on Wireless Communications and Signal Processing . Piscataway:IEEE Press , 2019 : 1 - 6 .
0
浏览量
1489
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构