浏览全部资源
扫码关注微信
[ "曹靖城(1985- ),男,天翼智慧家庭科技有限公司工程师,主要研究方向为计算机信息技术、电信技术、人工智能技术。" ]
[ "张继东(1976- ),男,博士,天翼智慧家庭科技有限公司高级工程师,主要研究方向为互联网技术、电信技术、人工智能技术。" ]
[ "史国杰(1980- ),男,天翼智慧家庭科技有限公司工程师,主要研究方向为云桌面技术、人工智能技术。" ]
网络出版日期:2021-01,
纸质出版日期:2021-01-20
移动端阅览
曹靖城, 张继东, 史国杰. 一种使用边缘增强技术提高相似图片检索召回率的方法[J]. 电信科学, 2021,37(1):76-84.
Jingcheng CAO, Jidong ZHANG, Guojie SHI. A method for improving recall rate of similar image retrieval by using edge enhancement technology[J]. Telecommunications science, 2021, 37(1): 76-84.
曹靖城, 张继东, 史国杰. 一种使用边缘增强技术提高相似图片检索召回率的方法[J]. 电信科学, 2021,37(1):76-84. DOI: 10.11959/j.issn.1000-0801.2021008.
Jingcheng CAO, Jidong ZHANG, Guojie SHI. A method for improving recall rate of similar image retrieval by using edge enhancement technology[J]. Telecommunications science, 2021, 37(1): 76-84. DOI: 10.11959/j.issn.1000-0801.2021008.
针对大规模图像分类处理中图像旋转或背景变换导致的配准度较低问题,提出一种基于边缘增强的卷积神经网络图像分类方法。该方法通过VGG19网络模型提取图像特征,并使用余弦相似度进行图像分类判定,利用边缘增强突出图像主体的边缘特征,降低图像旋转或背景变换对VGG19网络分类性能带来的影响。实验证明,该方法可以有效地提高同一主体旋转图像和背景变换图像与原始图像的相似度,适用于各类图像的分类。
Aiming at the problem of low registration caused by image rotation or background transformation in large-scale image classification processing
a convolutional neural network image classification method based on edge enhancement was proposed.This method extracted image features through the VGG19 network model
and used cosine similarity for image classification judgment
used edge enhancement to highlight the edge features of image subject
and reduced the impact of image rotation or background transformation on the classification performance of the VGG19 network.Experiments prove that this method can effectively improve the similarity between the same subject rotated image and background transformed image and the original image
and is suitable for the classification of various images.
苏赋 , 吕沁 , 罗仁泽 . 基于深度学习的图像分类研究综述 [J ] . 电信科学 , 2019 , 35 ( 11 ): 58 - 74 .
SU F , LV Q , LUO R Z . Review of image classification based on deep learning [J ] . Telecommunications Science , 2019 , 35 ( 11 ): 58 - 74 .
陈强普 , 桑军 , 项志立 , 等 . BN 对 VGG 神经网络的影响研究 [J ] . 合肥工业大学学报(自然科学版) , 2018 , 41 ( 1 ): 35 - 39 .
CHEN Q P , SANG J , XIANG Z L , et al . Research on the influence of BN on VGG neural network [J ] . Journal of Hefei University of Technology (Natural Science Edition) , 2018 , 41 ( 1 ): 35 - 39 .
唐浩漾 , 孙梓巍 , 王婧 , 等 . 基于VGG-19混合迁移学习模型的服饰图片识别 [J ] . 西安邮电大学学报 , 2018 , 23 ( 6 ): 87 - 93 .
TANG H Y , SUN Z W , WANG J , et al . Clothing image recognition based on VGG-19 hybrid transfer learning model [J ] . Journal of Xi’an University of Posts and Telecommunications , 2018 , 23 ( 6 ): 87 - 93 .
李校林 , 钮海涛 . 基于VGG-NET的特征融合面部表情识别 [J ] . 计算机工程与科学 , 2020 , 42 ( 3 ): 500 - 509 .
LI J L , NIU H T . Facial expression recognition based on feature fusion of VGG-NET [J ] . Computer Engineering and Science , 2020 , 42 ( 3 ): 500 - 509 .
谢新明 . 基于优化的 VGG 模型道路交通标志识别研究 [D ] . 长沙:长沙理工大学 , 2017 .
XIE X M . Research on road traffic sign recognition based on optimized VGG model [D ] . Changsha:Changsha University of Science and Technology , 2017 .
冯国徽 . 基于卷积神经网络VGG模型的小规模图像分类 [D ] . 兰州:兰州大学 , 2018 .
FENG G H . Small-scale image classification based on convolutional neural network VGG model [D ] . Lanzhou:Lanzhou University , 2018 .
CUBUK E D , ZOPH B , DANDELION M , et al . Auto augment:learning augmentation strategies from data [C ] // Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2020 .
杨旺功 , 淮永建 . 基于深度卷积生成对抗网络的花朵图像增强与分类 [J ] . 计算机科学 , 2020 , 47 ( 6 ): 176 - 179 .
YANG W G , HUAI Y J . Flower image enhancement and classification based on deep convolution generative adversarial network [J ] . Computer Science , 2020 , 47 ( 6 ): 176 - 179 .
0
浏览量
155
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构