浏览全部资源
扫码关注微信
[ "贾忠杰(1996- ),男,宁波大学信息科学与工程学院硕士生,主要研究方向为认知无线电中的频谱感知技术等。" ]
[ "金明(1981- ),男,博士,宁波大学信息科学与工程学院教授,主要研究方向为认知无线电技术、优化算法、机器学习等,在IEEE Transactions on Signal Processing等期刊发表论文40余篇。" ]
[ "宋晓群(1995- ),女,宁波大学信息科学与工程学院硕士生,主要研究方向为认知无线电、机器学习等。" ]
网络出版日期:2021-01,
纸质出版日期:2021-01-20
移动端阅览
贾忠杰, 金明, 宋晓群. 一种基于黏性隐马尔可夫模型的多频带频谱感知方法[J]. 电信科学, 2021,37(1):48-57.
Zhongjie JIA, Ming JIN, Xiaoqun SONG. A multi-band spectrum sensing method based on sticky hidden Markov model[J]. Telecommunications science, 2021, 37(1): 48-57.
贾忠杰, 金明, 宋晓群. 一种基于黏性隐马尔可夫模型的多频带频谱感知方法[J]. 电信科学, 2021,37(1):48-57. DOI: 10.11959/j.issn.1000-0801.2021018.
Zhongjie JIA, Ming JIN, Xiaoqun SONG. A multi-band spectrum sensing method based on sticky hidden Markov model[J]. Telecommunications science, 2021, 37(1): 48-57. DOI: 10.11959/j.issn.1000-0801.2021018.
现有多频带频谱感知方法经常利用宽带频谱的稀疏性来实现检测,当频谱占用率较高时具有较差的性能。针对这一问题,提出了一种基于相邻频带状态的多频带频谱感知方法。首先,通过引入黏性因子,建立了多频带状态和观测值的黏性隐马尔可夫模型。接着,详细分析了黏性隐马尔可夫模型中参数的迭代更新方式。最后,通过估计各频段观测值的后验均值实现了多频带频谱感知。仿真结果表明,不管宽带频谱是否具有稀疏性,所提方法的检测性能都优于传统方法,且在虚警概率为0.1、频带平均占用率为50%、平均信噪比为-12 dB时能达到接近0.99的检测概率,比其他方法的检测概率提升了约30%。另外,所提方法的收敛速度快于已有方法,因此具有更低的计算复杂度。
Existing multi-band spectrum sensing methods often use the sparsity of broadband spectrum.However
high spectrum occupancy rate of primary users degrades their performance severely.To address this issue
a novel multi-band spectrum sensing method was proposed by exploiting the state correlation among adjacent frequency bands.Firstly
a sticky hidden Markov model (SHMM) was established by regarding the multi-band states and measured energies as hidden and observed variables.In the SHMM
a sticky factor was introduced to represent the state correlation among adjacent frequency bands.Secondly
iterative expressions for the parameters of SHMM were derived.Finally
multi-band spectrum sensing was implemented by obtaining the posterior mean of observations from every frequency bands.Simulation results show that the proposed method outperforms existing methods
and when the false alarm probability is 0.1
the average frequency band occupancy rate is 50%
and the average signal-to-noise ratio is -12 dB
the detection probability can reach close to 0.99
which is about 30% higher than the detection probability of other methods.In addition
the proposed method had a faster convergence rate than existing methods and therefore has lower computational complexity.
BERA R , CHETTRI L . A comprehensive survey on internet of things (IoT) toward 5G wireless systems [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 1 ): 16 - 32 .
SHAIKH A , KAUR M J . Comprehensive survey of massive MIMO for 5G communications [C ] // Proceedings of Advances in Science and Engineering Technology International Conferences (ASET) .[S.l.:s.n. ] , 2019 : 1 - 6 .
HU F , CHEN B , ZHU K . Full spectrum sharing in cognitive radio networks toward 5G:a survey [J ] . IEEE Access , 2018 , 1 .
AWIN F , ABDEL-RAHEEM E , TEPE K . Blind spectrum sensing approaches for interweaved cognitive radio system:a tutorial and short course [J ] . IEEE Communications Surveys & Tutorials , 2019 , 21 ( 1 ): 238 - 259 .
YANG C , LI J , GUIZANI M , et al . Advanced spectrum sharing in 5G cognitive heterogeneous networks [J ] . IEEE Wireless Communications , 2016 , 23 ( 2 ): 94 - 101 .
PIRAN M J , TRAN N H , SUH D Y , et al . QoE-driven channel allocation and handoff management for seamless multimedia in cognitive 5G cellular networks [J ] . IEEE Transactions on Vehicular Technology , 2017 , 66 ( 7 ): 6569 - 6585 .
YOO S K , COTTON S L , SOFOTASIOS P C , et al . Entropy and energy detection-based spectrum sensing over f-composite fading channels [J ] . IEEE Transactions on Communications , 2019 , 67 ( 7 ): 4641 - 4653 .
MA L , LI Y , DEMIR A . Matched filtering assisted energy detection for sensing weak primary user signals [C ] // Proceedings of 2012 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP) . Piscataway:IEEE Press , 2012 : 1 - 4 .
HATTAB G , IBNKAHLA M . Multiband spectrum access:great promises for future cognitive radio networks [J ] . Proceedings of the IEEE , 2014 , 102 ( 99 ): 282 - 306 .
付明娃 . 认知无线电中频谱感知与频谱共享技术研究 [D ] . 南京:南京邮电大学 , 2019 .
FU M W . Research on spectrum sensing and spectrumsharing technology in cognitive radio [D ] . Nanjing:Nanjing University of Posts and Telecommunications , 2019 .
XIONG T , YAO Y D , REN Y , et al . Multiband spectrum sensing in cognitive radio networks with secondary user hardware limitation:random and adaptive spectrum sensing strategies [J ] . IEEE Transactions on Wireless Communications , 2018 : 3018 - 3029 .
郭新 , 赵海峰 , 穆晓敏 . 基于主用户活跃性的多带联合频谱感知模型 [J ] . 计算机工程与应用 , 2014 , 50 ( 7 ): 99 - 103 .
GUO X , ZHAO H F , MU X M . Multiband joint detection framework based on activity of primary [J ] . Computer Engineering and Applications , 2014 , 50 ( 7 ): 99 - 103 .
QI H , YU J , CAVALLARO A , et al . Robust compressive sensing of multiband spectrum with partial and incorrect priors [C ] // Proceedings of IEEE International Conference on Communications (ICC) . Piscataway:IEEE Press , 2019 : 1 - 6 .
GAO Y , XU K , CHEN Y . A novel method of multi-band spectrum sensing exploiting dynamic compressive sensing [C ] // Proceedings of International Conference on Signal Processing Proceedings .[S.l.:s.n. ] , 2016 : 1 - 6 .
HU W , TIAN G , KANG Y , et al . Dual sticky hierarchical Dirichlet process hidden Markov model and its application to natural language description of motions [J ] . IEEE Transactions on Pattern Analysis & Machine Intelligence , 2018 , 40 ( 10 ): 2355 - 2373 .
XU Y , CHENG P , CHEN Z , et al . Mobile collaborative spectrum sensing for heterogeneous networks:a Bayesian machine learning approach [J ] . IEEE Transactions on Signal Processing , 2018 , 66 ( 21 ): 5634 - 5647 .
INIBHUNU C , AM C M . State based hidden Markov models for temporal pattern discovery in critical care [C ] // Proceedings of IEEE Life Sciences Conference (LSC) . Piscataway:IEEE Press , 2018 : 77 - 80 .
THILINA K M , CHOI K W , SAQUIB N , et al . Machine learning techniques for cooperative spectrum sensing in cognitive radio networks [J ] . IEEE Journal on Selected Areas in Communications , 2013 , 31 ( 11 ): 2209 - 2221 .
SHU L , MCISAAC K , OSINSKI G R . Learning spatial-spectral features for hyperspectral image classification [J ] . IEEE Transactions on Geoscience & Remote Sensing , 2018 , 56 ( 9 ): 5138 - 5147 .
0
浏览量
288
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构