浏览全部资源
扫码关注微信
[ "韦烜(1974- ),女,中国电信股份有限公司研究院工程师,主要从事IP网络规划、新技术研究方面的工作" ]
[ "黄晓莹(1980- ),女,中国电信股份有限公司研究院工程师,主要从事IP网络架构演进及新技术研究方面的工作" ]
网络出版日期:2021-04,
纸质出版日期:2021-04-20
移动端阅览
韦烜, 黄晓莹. 大型IP网络时延的主成分分析[J]. 电信科学, 2021,37(4):62-72.
Xuan WEI, Xiaoying HUANG. Principal component analysis of time delay in large IP network[J]. Telecommunications science, 2021, 37(4): 62-72.
韦烜, 黄晓莹. 大型IP网络时延的主成分分析[J]. 电信科学, 2021,37(4):62-72. DOI: 10.11959/j.issn.1000-0801.2021059.
Xuan WEI, Xiaoying HUANG. Principal component analysis of time delay in large IP network[J]. Telecommunications science, 2021, 37(4): 62-72. DOI: 10.11959/j.issn.1000-0801.2021059.
网络时延是评估网络性能的关键指标之一。主成分分析(PCA)是数据挖掘领域常用的一种多变量分析和降维算法。通过对大型 IP 网络时延进行 PCA 分析,旨在挖掘网络时延的深层原因及网络各节点间的相互依赖关系,并搭建一个科学合理的网络时延评价体系,最终得到IP网络建设、优化改造的有效建议。对历史网络时延进行离线分析只是主成分分析方法的一种初步应用,今后可结合网络拓扑结构、现网流量流向、路由、距离等相关因素,将主成分分析方法应用到针对网络流量、网络时延、网络丢包等网络性能的实时在线监测分析中,进一步提升网络运营的效率和质量。
Network time delay is one of the key indexes to evaluate network performance.Principal component analysis (PCA) is a kind of multivariable analysis and declination algorithm commonly used in the field of data mining.Based on PCA analysis of time delay in large IP networks
aiming to find out the deep reason of time delay and the interdependencies among nodes of the network
a scientific and reasonable network time delay evaluation system was built
and effective suggestions for IP network construction and optimization were finally got.The off-line analysis of the historical network delay is only a preliminary application of the PCA.In the future
PCA can be applied to the real-time on-line monitoring and analysis of the network performance
such as network traffic
network delay
network packet loss
etc.
in combination with the network topology
current network traffic direction
routing
distance and other related factors
thus the efficiency and quality of network operations can be further improved.
陈小峰 , 赵雅迪 , 张利鹏 , 等 . 电力潜在敏感客户预测的大数据方法应用 [J ] . 电信科学 , 2019 , 35 ( 11 ): 117 - 124 .
CHEN X F , ZHAO Y D , ZHANG L P , et al . Application of big data method in forecasting potential sensitive customers of electric power [J ] . Telecommunications Science , 2019 , 35 ( 11 ): 117 - 124 .
许方敏 , 伍丽娇 , 杨帆 , 等 . 时间敏感网络(TSN)及无线TSN技术 [J ] . 电信科学 , 2020 , 36 ( 8 ): 81 - 91 .
XU F M , WU L J , YANG F , et al . Time-sensitive networking (TSN) and wireless TSN technology [J ] . Telecommunications Science , 2020 , 36 ( 8 ): 81 - 91 .
李昊奇 , 应娜 , 郭春生 , 等 . 基于深度信念网络和线性单分类SVM的高维异常检测 [J ] . 电信科学 , 2018 , 34 ( 1 ): 34 - 42 .
LI Q H , YING N , GUO C S , et al . High-dimensional outlier detection based on deep belief network and linear one-class SVM [J ] . Telecommunications Science , 2018 , 34 ( 1 ): 34 - 42 .
杨明极 , 刘恺怿 , 邵丹 . 用于WLAN室内定位的PCA聚类算法 [J ] . 电信科学 , 2016 , 32 ( 7 ): 21 - 26 .
YANG M J , LIU K Y , SHAO D . PCA clustering algorithm for indoor positioning in WLAN [J ] . Telecommunications Science , 2016 , 32 ( 7 ): 21 - 26 .
林川 , 赵海 , 毕远国 , 等 . 互联网网络时延特征研究 [J ] . 通信学报 , 2015 , 36 ( 3 ): 149 - 160 .
LIN C , ZHAO H , BI Y G , et al . Reasearch on network delay of Internet [J ] . Journal on Communications , 2015 , 36 ( 3 ): 149 - 160 .
牟澄 . 互联网流量特征智能提取关键技术研究 [D ] . 北京:北京邮电大学 , 2014 .
MU C . Research on key technologies of intelligent extraction of Internet traffic characteristics [D ] . Beijing:Beijing University of Posts and Telecommunications , 2014 .
0
浏览量
172
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构