浏览全部资源
扫码关注微信
1. 中国电信股份有限公司研究院,北京 102209
2. 中国电信集团有限公司,北京100032
[ "赵龙刚(1977− ),男,中国电信股份有限公司研究院 AI 研发中心高级工程师,主要研究方向为AI能力平台、AI可视化建模、行业应用大数据研究等" ]
[ "刘汉生(1993− ),男,中国电信股份有限公司研究院 AI研发中心工程师,主要研究方向为网络智能化运维、威胁情报等" ]
[ "王峰(1979− ),男,博士,中国电信股份公司研究院教授级高级工程师,长期从事云计算、大数据、人工智能等新兴信息技术领域的技术研发和产品创新工作" ]
[ "狄爽(1992− ),女,现就职于中国电信集团公司云网运营部(大数据和AI中心)智能云网调度运营中心(ICNOC),主要研究方向为物联网业务运营分析优化、网络运维等" ]
网络出版日期:2021-05,
纸质出版日期:2021-05-20
移动端阅览
赵龙刚, 刘汉生, 王峰, 等. 基于行为画像的物联网业务保障方法[J]. 电信科学, 2021,37(5):52-63.
Longgang ZHAO, Hansheng LIU, Feng WANG, et al. IoT business guarantee method based on behavioral portrait[J]. Telecommunications science, 2021, 37(5): 52-63.
赵龙刚, 刘汉生, 王峰, 等. 基于行为画像的物联网业务保障方法[J]. 电信科学, 2021,37(5):52-63. DOI: 10.11959/j.issn.1000-0801.2021113.
Longgang ZHAO, Hansheng LIU, Feng WANG, et al. IoT business guarantee method based on behavioral portrait[J]. Telecommunications science, 2021, 37(5): 52-63. DOI: 10.11959/j.issn.1000-0801.2021113.
物联网终端具有客户基数大、生产厂商多、应用场景复杂的特点,在日常维护过程中存在质差标准难以统一、定位定段困难的问题。针对上述现象提出一种基于行为画像的业务保障方法。首先基于关键指标分布特征构造企业质差指纹模型,借鉴统计学习中均值漂移聚类的思想,实现质差指标体系的准确搭建。然后针对调测终端与质差终端难区分、弱覆盖终端难识别等问题,构建了单客户质差行为画像,有效保证了模型的准确性。最后在现网环境进行了试点和分析,为物联网业务保障提供借鉴和参考。
IoT terminals have the characteristics of large user base
many manufacturers and numerous scenarios.It is difficult to unify the standard of poor quality and to locate the segment in the routine maintenance process.Aiming at the above phenomenon
a business guarantee method based on behavior portrait was proposed.Firstly
based on the distribution characteristics of key indicators
a fingerprint model of enterprise quality deficit was constructed
and the idea of mean shift clustering in statistical learning was used to realize the accurate construction of quality deficit index system.Then
to solve the problem that it was difficult to distinguish between the measurement terminal and the poor quality terminal
and it was difficult to identify the weak coverage terminal
a single user poor quality behavior portrait was constructed to effectively ensure the accuracy of the model.Finally
the pilot and analysis were carried out in the current network environment to provide reference for the IoT business guarantee.
王燕 . 基于客户感知与业务特征的电信网络性能监控与检测模型研究 [D ] . 西安:西安电子科技大学 , 2018 .
WANG Y . Research on the abnormally detection model based on user perception and service feature of telecommunication network [D ] . Xi’an:Xidian University , 2018 .
耶旭立 , 曾强 , 刘立宇 , 等 . 基于信令大数据构建覆盖“端管云”物联网端到端业务保障系统 [J ] . 物联网学报 , 2018 , 2 ( 2 ): 85 - 93 .
YE X L , ZENG Q , LIU L Y , et al . Building end to end service guarantee system of IoT covering “terminal pipe and cloud”based on signaling big data [J ] . Chinese Journal on Internet of Things , 2018 , 2 ( 2 ): 85 - 93 .
陈俊杰 . 基于大数据及人工智能的物联网客户感知保障研究及实践 [J ] . 电信工程技术与标准化 , 2021 , 34 ( 2 ): 72 - 78 .
CHEN J J . Research and practice of customer perception guarantee of Internet of things based on big data and artificial intelligence [J ] . Telecom Engineering Technics and Standardization , 2021 , 34 ( 2 ): 72 - 78 .
蒋念师 . 面向行业 APN 的窄带物联网端到端质量管理机制的研究与实现 [D ] . 南京:南京邮电大学 , 2020 .
JIANG N S . The research and implementation of narrowband Internet of Things end-to-end quality management mechanism for industry APN [D ] . Nanjing:Nanjing University of Posts and Telecommunications , 2020 .
STANKOVIC J A . Research directions for the Internet of things [J ] . IEEE Internet of Things Journal , 2014 , 1 ( 1 ): 3 - 9 .
刘智琼 , 陈娜 , 刘开开 , 等 . 中国电信 BSS 中台架构的研究与设计 [J ] . 电信科学 , 2021 , 37 ( 2 ): 135 - 143 .
LIU Z Q , CHEN N , LIU K K , et al . Research and design of China Telecom BSS middle platform [J ] . Telecommunications Science , 2021 , 37 ( 2 ): 135 - 143 .
刘志勇 , 何忠江 , 刘敬龙 , 等 . 统一数据湖技术研究和建设方案 [J ] . 电信科学 , 2021 , 37 ( 1 ): 121 - 128 .
LIU Z Y , HE Z J , LIU J L , et al . Technology research and construction scheme of unified data lake [J ] . Telecommunications Science , 2021 , 37 ( 1 ): 121 - 128 .
卓琳 , 赵厚宇 , 詹思延 . 异常检测方法及其应用综述 [J ] . 计算机应用研究 , 2020 , 37 ( S1 ): 9 - 15 .
ZHUO L , ZHAO H Y , ZHAN S Y . Overview of anomaly detection methods and applications [J ] . Application Research of Computers , 2020 , 37 ( S1 ): 9 - 15 .
SUN D,FUM , ZHU L M , et al . Non-intrusive anomaly detection with streaming performance metrics and logs for DevOps in public clouds: acase study in AWS [J ] . IEEE Transactions on Emerging Topics in Computing , 2016 , 4 ( 2 ): 278 - 289 .
MA M H , ZHANG S L , PEID , et al . Robust and rapid adaption for concept drift in software system anomaly detection [C ] // Proceedings of 2018 IEEE 29th International Symposium on Software Reliability Engineering (ISSRE) . Piscataway: IEEE Press , 2018 : 13 - 24 .
0
浏览量
493
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构