浏览全部资源
扫码关注微信
1. 国家电网有限公司大数据中心,北京 100031
2. 清华大学社会科学学院,北京 100084
[ "彭放(1987- ),男,国家电网有限公司大数据中心高级工程师、数据分析中心经营处处长,主要研究方向为经营管理和智慧政务大数据" ]
[ "彭高群(1984- ),女,国家电网有限公司大数据中心数据分析中心经营处副处长,主要研究方向为智慧政务大数据" ]
[ "祁亚茹(1990- ),女,国家电网有限公司大数据中心中级经济师,主要研究方向为智慧政务大数据" ]
[ "刘甜甜(1992- ),女,国家电网有限公司大数据中心注册会计师,主要研究方向为财务、审计方向大数据分析" ]
[ "周晓磊(1991- ),女,清华大学博士生,主要研究方向为宏观经济、经济大数据分析" ]
网络出版日期:2021-07,
纸质出版日期:2021-07-20
移动端阅览
彭放, 彭高群, 祁亚茹, 等. 基于电力大数据的中国工业增加值现时预测[J]. 电信科学, 2021,37(7):115-125.
Fang PENG, Gaoqun PENG, Yaru QI, et al. Nowcasting of China’s industrial added value based on electric power big data[J]. Telecommunications science, 2021, 37(7): 115-125.
彭放, 彭高群, 祁亚茹, 等. 基于电力大数据的中国工业增加值现时预测[J]. 电信科学, 2021,37(7):115-125. DOI: 10.11959/j.issn.1000-0801.2021143.
Fang PENG, Gaoqun PENG, Yaru QI, et al. Nowcasting of China’s industrial added value based on electric power big data[J]. Telecommunications science, 2021, 37(7): 115-125. DOI: 10.11959/j.issn.1000-0801.2021143.
工业增加值是衡量实体经济运行状况的重要指标,为充分挖掘电力数据在宏观经济现时预测中的价值,服务于政府政策制定和经济社会发展,以电力数据和传统统计数据为基础,采用Bagging和Boosting等算法对工业增加值进行了现时预测。结果表明:第一,传统统计数据可以显著提升ARIMA模型的预测效果;第二,电力数据的预测效果取决于电力指标的选择,选择恰当的电力指标有助于更及时、准确地预测工业增加值;第三,电力数据信息对当期工业增加值的预测能力可能会低于对未来期工业增加值的预测能力,这意味着电力数据更适用于超前的预测。
Industrial added value is an important indicator to measure the operation of the real economy.In order to fully mine the value of power data in the current macroeconomic nowcasting
so as to serve the government policy making
the Bagging and Boosting algorithms in machine learning were applied to nowcast industrial added value based on electric power data as well as traditional statistical data.Firstly
traditional statistical data can significantly improve the forecasting effect of the ARIMA model.Secondly
the nowcasting ability of electric power data depends on the selection of electric power indicators
and the proper electric power index is helpful to predict industrial added value more timely and accurately.Thirdly
the prediction ability of electric power data to the industrial added value in the current period may be lower than that in the future
which means the power data is more likely to be used to predict ahead of time.
尹德才 , 张文 . 当前宏观经济现时预测研究综述 [J ] . 统计与信息论坛 , 2020 , 35 ( 1 ): 121 - 128 .
YIN D C , ZHANG W . A review of current macroeconomic nowcasting research [J ] . Statistics & Information Forum , 2020 , 35 ( 1 ): 121 - 128 .
顾光同 , 许冰 . 中国工业增加值的半月预报:基于宏观月度数据 [J ] . 系统工程理论与实践 , 2018 , 38 ( 8 ): 1983 - 1993 .
GU G T , XU B . Half-month forecast of China’s industrial added value: based on the macro monthly data [J ] . Systems Engineer-ing-Theory & Practice , 2018 , 38 ( 8 ): 1983 - 1993 .
王雷 , 聂常虹 . 中国债券利差对宏观经济指标的预测能力研究 [J ] . 管理评论 , 2019 , 31 ( 5 ): 66 - 76 .
WANG L , NIE C H . Research on how predictive Chinese bond spreads is of macroeconomic indices [J ] . Management Review , 2019 , 31 ( 5 ): 66 - 76 .
STOCK J H , WATSON M W . Forecasting using principal components from a large number of predictors [J ] . Journal of the American Statistical Association , 2002 , 97 ( 460 ): 1167 - 1179 .
STOCK H , WATSON W . Generalized shrinkage methods for forecasting using many predictors [J ] . Journal of Business and Economic Statistics , 2012 , 30 ( 4 ): 481 - 493 .
BAI J , NG S . Boosting diffusion indices [J ] . Journal of Applied Econometrics , 2009 , 24 ( 4 ): 607 - 629 .
BAI J , NG S . Determining the number of factors in approximate factor models [J ] . Econometrica , 2002 , 70 ( 1 ): 191 - 221 .
BREIMAN L . Bagging predictors [J ] . Machine Learning , 1996 , 24 ( 2 ): 123 - 140 .
INOUE A , KILIAN L . How useful is bagging in forecasting economic time series? A case study of U.S.consumer price inflation [J ] . Journal of the American Statistical Association , 2008 , 103 ( 482 ): 511 - 522 .
KIM H H , SWANSON N R . Forecasting financial and macroeconomic variables using data reduction methods:new empirical evidence [J ] . Journal of Econometrics , 2014 ( 178 ): 352 - 367 .
BÜHLMANN P , YU B . Boosting with the L 2 loss:regressi on and classification [J ] . Journal of the American Statistical Association , 2003 ( 98 ): 324 - 339 .
0
浏览量
312
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构