浏览全部资源
扫码关注微信
1. 浙江科技学院大数据学院,浙江 杭州 310023
2. 浙江水利水电学院信息工程与艺术设计学院,浙江 杭州 310027
3. 杭州海康威视网络与信息安全实验室,浙江 杭州 310051
4. 广州大学网络空间先进技术研究院,广东 广州 510006
[ "李悦(1996− ),女,浙江科技学院硕士生,主要研究方向为深度学习、计算机视觉" ]
[ "钱亚冠(1976− ),男,浙江科技学院副教授,主要研究方向为深度学习、人工智能安全和大数据处理" ]
[ "关晓惠(1977− ),女,浙江水利水电学院副教授,主要研究方向为数字图像处理与模式识别" ]
[ "李蔚(1978− ),女,浙江科技学院副教授,主要研究方向为科学计算、模式识别和计算机视觉中的机器学习问题" ]
[ "王滨(1977− ),男,杭州海康威视网络与信息安全实验室研究员,主要研究方向为物联网安全、人工智能安全和网络安全" ]
[ "顾钊铨(1989− ),男,广州大学网络空间先进技术研究院教授,主要研究方向为无线网络、分布式计算、大数据分析和人工智能安全" ]
网络出版日期:2021-08,
纸质出版日期:2021-08-20
移动端阅览
李悦, 钱亚冠, 关晓惠, 等. 面向人脸识别的口罩区域修复算法[J]. 电信科学, 2021,37(8):66-76.
Yue LI, Yaguan QIAN, Xiaohui GUAN, et al. Region inpainting algorithm of mouth-muffles for facial recognition[J]. Telecommunications science, 2021, 37(8): 66-76.
李悦, 钱亚冠, 关晓惠, 等. 面向人脸识别的口罩区域修复算法[J]. 电信科学, 2021,37(8):66-76. DOI: 10.11959/j.issn.1000-0801.2021193.
Yue LI, Yaguan QIAN, Xiaohui GUAN, et al. Region inpainting algorithm of mouth-muffles for facial recognition[J]. Telecommunications science, 2021, 37(8): 66-76. DOI: 10.11959/j.issn.1000-0801.2021193.
遮挡下的人脸识别一直是现实场景中的一个难题。特别是新冠肺炎疫情爆发后,在机场、车站等需要鉴别入场人员身份信息的场所,口罩遮挡使得可供识别的面部特征大幅减少,原有的人脸识别算法准确率随之下降。对去除口罩遮挡进行了研究,提出了一个新的框架修复人脸,利用边缘生成网络还原遮挡区域的边缘,在此基础上再利用区域填充网络恢复被遮挡的人脸,同时保留身份信息。为提升模型的性能,提出空间加权对抗损失和身份一致性损失训练上述网络,并利用关键点信息,构建了两个戴口罩的人脸数据集。实验结果表明,恢复被口罩遮挡的人脸的图像使人脸识别算法 ArcFace 的准确率达到 98.39%,比直接采用ArcFace识别遮挡人脸提升了4.13%的准确率。
Facial recognition under occlusion is a well-known difficult problem in real scenes.Especially after the outbreak of COVID-19
in airports
stations and other places that need to verify the identity of visitors
the mouth-muffle occlusion greatly reduces the facial features that can be important for identification
and the accuracy of face recognition algorithm decreases.Face de-occlusion was studied
and a novel framework was proposed to restore face
which used the edge generation network to generate edge maps.On this basis
the occluded region was restored by the region completion network while preserving identity information.In order to improve the performance
the spatial weighted adversarial loss and identity-preserving loss were introduced to train the above two networks.Then two face datasets with mouth-muffles were constructed by face landmarks.The experimental results show that the accuracy of facial recognition algorithm ArcFace on the face dataset restored by the proposed model was 98.39%
which was 4.13% higher than that of directly using ArcFace.
TAIGMAN Y , YANG M , RANZATO M , et al . DeepFace:closing the gap to human-level performance in face verification [C ] // Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2014 : 1701 - 1708 .
HUANG G B , MATTAR M , BERG T , et al . Labeled faces in the wild:a database forStudying face recognition in unconstrained environments [EB ] . 2008 .
DENG J K , GUO J , XUE N N , et al . ArcFace:additive angular margin loss for deep face recognition [C ] // Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2019 : 4685 - 4694 .
DUAN Q Y , ZHANG L . BoostGAN for occlusive profile face frontalization and recognition [EB ] . 2019 .
ZHAO F , FENG J S , ZHAO J , et al . Robust LSTM- autoencoders for face de-occlusion in the wild [J ] . IEEE Transactions on Image Processing , 2018 , 27 ( 2 ): 778 - 790 .
ZHAO Y J , CHEN W K , XING J , et al . Identity preserving face completion for large ocular region occlusion [EB ] . 2018 .
WANG M , HU Z P , SUN Z , et al . Varying face occlusion detection and iterative recovery for face recognition [J ] . Journal of Electronic Imaging , 2017 ( 26 ):033009.
ZHANG J , KAN M N , SHAN S G , et al . Occlusion-free face alignment:deep regression networks coupled with de-corrupt AutoEncoders [C ] // Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2016 : 3428 - 3437 .
YUAN X W , PARK I K . Face de-occlusion using 3D morphable model and generative adversarial network [C ] // Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV) . Piscataway:IEEE Press , 2019 : 10061 - 10070 .
GOODFELLOW I , POUGET-ABADIE J ,, MIRZA M , et al . Generative adversarial nets [C ] // Proceedings of the Advances in Neural Information Processing Systems . New York:IncPress , 2014 : 2672 - 2680 .
HE Z L , ZUO W M , KAN M N , et al . AttGAN:facial attribute editing by only changing what you want [J ] . IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society , 2019 , 28 ( 11 ): 5464 - 5478 .
IIZUKA S , SIMO-SERRA E ,, ISHIKAWA H . Globally and locally consistent image completion [J ] . ACM Transactions on Graphics , 2017 , 36 ( 4 ): 1 - 14 .
LI Y J , LIU S F , YANG J M , et al . Generative face completion [C ] // Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2017 : 5892 - 5900 .
GE S , LI C , ZHAO S , et al . Occluded face recognition in the wild by identity-diversity inpainting [J ] . IEEE Transactions on Circuits and Systems for Video Technology , 2020 , 30 ( 10 ): 3387 - 3397 .
MIRZA M , OSINDERO S . Conditional generative adversarial nets [J ] . arXiv:1411.1784 , 2014 .
CANNY J . A computational approach to edge detection [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 1986 , 8 ( 6 ): 679 - 698 .
ZHANG K P , ZHANG Z P , LI Z F , et al . Joint face detection and alignment using multitask cascaded convolutional networks [J ] . IEEE Signal Processing Letters , 2016 , 23 ( 10 ): 1499 - 1503 .
JOHNSON J , ALAHI A , LI F F . Perceptual losses for real-time style transfer and super-resolution [M ] // Computer Vision –ECCV 2016 . Cham : Springer International Publishing , 2016 : 694 - 711 .
GATYS L A , ECKER A S , BETHGE M . Image style transfer using convolutional neural networks [C ] // Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2016 : 2414 - 2423 .
BARTH N . The gramian and k-volume in n-space:some classical results in linear algebra [J ] . Journal of Young Investigators , 1999 , 2 ( 1 ): 1 - 4 .
YI D , LEI Z , LIAO S , et al . Learning face representation from scratch [J ] . arXiv:1411.7923 , 2014 .
ISOLA P , ZHU J Y , ZHOU T H , et al . Image-to-image translation with conditional adversarial networks [C ] // Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2017 : 5967 - 5976 .
MAATEN L , HINTON G . Visualizing data using t-SNE [J ] . Journal of Machine Learning Research , 2008 , 9 ( 3 ): 2579 - 2605 .
0
浏览量
599
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构