浏览全部资源
扫码关注微信
1. 杭州电子科技大学,浙江 杭州 310018
2. 绍兴供电公司柯桥供电分公司,浙江 绍兴 330600
[ "康帅(1996− ),女,杭州电子科技大学通信工程学院硕士生,主要研究方向为计算机视觉与人工智能等" ]
[ "章坚武(1961− ),男,博士,杭州电子科技大学通信工程学院教授、博士生导师,主要研究方向为移动通信、多媒体信号处理与人工智能、通信网络与信息安全" ]
[ "朱尊杰(1994−),男,杭州电子科技大学通信工程学院讲师,主要研究方向为机器人导航定位、场景三维重建、三维模型语义理解与交互等" ]
[ "童国锋(1968− ),男,绍兴供电公司柯桥供电分公司总经理、高级工程师,主要研究方向为继电保护、配网" ]
网络出版日期:2021-08,
纸质出版日期:2021-08-20
移动端阅览
康帅, 章坚武, 朱尊杰, 等. 改进YOLOv4算法的复杂视觉场景行人检测方法[J]. 电信科学, 2021,37(8):46-56.
Shuai KANG, Jianwu ZHANG, Zunjie ZHU, et al. An improved YOLOv4 algorithm for pedestrian detection in complex visual scenes[J]. Telecommunications science, 2021, 37(8): 46-56.
康帅, 章坚武, 朱尊杰, 等. 改进YOLOv4算法的复杂视觉场景行人检测方法[J]. 电信科学, 2021,37(8):46-56. DOI: 10.11959/j.issn.1000-0801.2021198.
Shuai KANG, Jianwu ZHANG, Zunjie ZHU, et al. An improved YOLOv4 algorithm for pedestrian detection in complex visual scenes[J]. Telecommunications science, 2021, 37(8): 46-56. DOI: 10.11959/j.issn.1000-0801.2021198.
复杂视觉场景下存在过暗或者过曝的光照、恶劣的天气、严重遮挡、行人尺寸差别大以及图像模糊等问题,大大增加了行人检测的难度。因此,针对复杂视觉场景下行人检测准确度低、漏检严重的问题,提出了改进的YOLOv4算法以增强复杂视觉场景下的行人检测效果。首先,构建复杂视觉场景下的行人数据集。然后,在主干网中加入混合空洞卷积,提高网络对行人特征的提取能力。最后,提出空间锯齿空洞卷积结构,代替空间金字塔池化结构,获取更多细节特征。实验表明,在本文构建的行人数据集上,改进后的 YOLOv4算法的平均精度(average precision,AP)达到了90.08%,相比原YOLOv4算法提高了7.2%,对数平均漏检率(log-average miss rate,LAMR)降低了13.69%。
At present
the difficulty of pedestrian detection has been dramatically increased because of some problems
such as the dark or exposed illumination
bad weather
serious occlusion
large difference size of pedestrians and blurred images in complex visual scenes.Therefore
an improved YOLOv4 algorithm was proposed
which improved the detection performance of pedestrian detection in complex visual scenes
aiming at the problems of low accuracy and highly missed detection rate.Firstly
the self-annotation data set pedetrian were constructed.Secondly
the hybrid dilated convolution (HDC) was added into the backbone network to improve the ability of pedestrian feature extraction.Finally
in order to obtain more detailed feature
the spatial jagged dilated convolution (SJDC) structure was proposed to replace the spatial pyramid pooling structure.The experimental results show that the average precision (AP) of the proposed algorithm can achieve 90.08%.The proposed algorithm can substantially improve AP by 7.2%
and the log-average miss rate (LAMR) reduce by 13.69% compared with the original YOLOv4 algorithm.
LIN C Z , LU J W , WANG G , et al . Graininess-aware deep feature learning for robust pedestrian detection [J ] . IEEE Transactions on Image Processing , 2020 ( 29 ): 3820 - 3834 .
王霞 , 张为 . 基于联合学习的多视角室内人员检测网络 [J ] . 光学学报 , 2019 , 39 ( 2 ): 78 - 88 .
WANG X , ZHANG W . Multi-view indoor human detection neural network based on joint learning [J ] . Acta Optica Sinica , 2019 , 39 ( 2 ): 78 - 88 .
VIOLA P , JONES M . Rapid object detection using a boosted cascade of simple features [C ] // Proceedings of Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.CVPR 2001 . Piscataway:IEEE Press , 2001 .
DALAL N , TRIGGS B . Histograms of oriented gradients for human detection [C ] // Proceedings of 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05) . Piscataway:IEEE Press , 2005 .
WANG X Y , HAN T X , YAN S C . An HOG-LBP human detector with partial occlusion handling [C ] // Proceedings of 2009 IEEE 12th International Conference on Computer Vision . Piscataway:IEEE Press , 2009 : 32 - 39 .
DOLLÁR P , APPEL R , BELONGIE S , et al . Fast feature Pyramids for object detection [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2014 , 36 ( 8 ): 1532 - 1545 .
GIRSHICK R , DONAHUE J , DARRELL T , et al . Rich feature hierarchies for accurate object detection and semantic segmentation [C ] // Proceedings of 27th IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2014 : 580 - 587 .
GIRSHICK R , . Fast R-CNN [C ] // Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV) . Piscataway:IEEE Press , 2015 : 1440 - 1448 .
REN S Q , HE K M , GIRSHICK R , et al . Faster R-CNN:towards real-time object detection with region proposal networks [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2017 , 39 ( 6 ): 1137 - 1149 .
REDMON J , DIVVALA S , GIRSHICK R , et al . You only look once:unified,real-time object detection [C ] // Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2016 : 779 - 788 .
LIN T Y , GOYAL P , GIRSHICK R , et al . Focal loss for dense object detection [C ] // Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV) . Piscataway:IEEE Press , 2017 : 2999 - 3007 .
LIU W , ANGUELOV D , ERHAN D , et al . SSD:single shot MultiBox detector [M ] // Computer Vision-ECCV 2016 . Cham : Springer International Publishing , 2016 : 21 - 37 .
WU D H , LV S C , JIANG M , et al . Using channel pruning-based YOLOv4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments [J ] . Computers and Electronics in Agriculture , 2020 , 178 : 105742 .
李彬 , 汪诚 , 吴静 , 等 . 改进 YOLOv4 算法的航空发动机部件表面缺陷检测 [J ] . 激光与光电子学进展 , 2021 : 1 - 17 .
LI B , WANG C , WU J , et al . Surface defect detection of aeroengine components based on improved YOLOv4 algorithm [J ] . Laser & Optoelectronics Progress , 2021 : 1 - 17 .
LEE C H , LIN C W . A two-phase fashion apparel detection method based on YOLOv4 [J ] . Applied Sciences , 2021 , 11 ( 9 ): 3782 .
WU L , MA J , ZHAO Y H , et al . Apple detection in complex scene using the improved YOLOv4 model [J ] . Agronomy , 2021 , 11 ( 3 ): 476 .
FU H X , SONG G Q , WANG Y C . Improved YOLOv4 marine target detection combined with CBAM [J ] . Symmetry , 2021 , 13 ( 4 ): 623 .
BOCHKOVSKIY A , WANG C Y , LIAO H Y MARK . YOLOv4:optimal speed and accuracy of object detection [EB ] . 2020 .
李玉 , 甄畅 , 石雪 , 等 . 基于熵加权K-means全局信息聚类的高光谱图像分类 [J ] . 中国图象图形学报 , 2019 , 24 ( 4 ): 630 - 638 .
LI Y , ZHEN C , SHI X , et al . Hyperspectral image classification algorithm based on entropy weighted K-means with global information [J ] . Journal of Image and Graphics , 2019 , 24 ( 4 ): 630 - 638 .
WANG P Q , CHEN P F , YUAN Y , et al . Understanding convolution for semantic segmentation [C ] // Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) . Piscataway:IEEE Press , 2018 : 1451 - 1460 .
HE K M , ZHANG X Y , REN S Q , et al . Spatial pyramid pooling in deep convolutional networks for visual recognition [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2015 , 37 ( 9 ): 1904 - 1916 .
REDMON J , FARHADI A . YOLOv3:an incremental improvement [EB ] . 2018 .
LIU S , QI L , QIN H F , et al . Path aggregation network for instance segmentation [C ] // Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2018 : 8759 - 8768 .
YU F , KOLTUN V , FUNKHOUSER T . Dilated residual networks [C ] // Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2017 : 636 - 644 .
赵朵朵 , 章坚武 , 傅剑峰 . 基于深度学习的实时人流统计方法研究 [J ] . 传感技术学报 , 2020 , 33 ( 8 ): 1161 - 1168 .
ZHAO D D , ZHANG J W , FU J F . Research on real-time statistics of people flow based on deep learnning [J ] . Chinese Journal of Sensors and Actuators , 2020 , 33 ( 8 ): 1161 - 1168 .
EVERINGHAM M , VAN GOOL L , WILLIAMS C K I , et al . The pascal visual object classes (VOC) challenge [J ] . International Journal of Computer Vision , 2010 , 88 ( 2 ): 303 - 338 .
DOLLAR P , WOJEK C , SCHIELE B , et al . Pedestrian detection:an evaluation of the state of the art [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2012 , 34 ( 4 ): 743 - 761 .
OUYANG W L , WANG X G . A discriminative deep model for pedestrian detection with occlusion handling [C ] // Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2012 : 3258 - 3265 .
0
浏览量
406
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构