浏览全部资源
扫码关注微信
1. 北京邮电大学网络与交换技术国家重点实验室,北京100876
2. 中国移动通信有限公司研究院,北京100053
3. 中国联合网络通信集团有限公司,北京 100033
[ "王敬宇(1978− ),男,博士,北京邮电大学教授、博士生导师,主要研究方向为智能网络、机器学习、边缘计算等" ]
[ "周铖(1979− ),男,中国移动通信有限公司研究院项目经理,主要研究方向为IP网络技术和网络智能化" ]
[ "张蕾(1978− ),女,中国联合网络通信集团有限公司高级工程师,主要研究方向为通信网络、云网融合、人工智能等" ]
[ "刘聪(1980− ),男,博士,中国移动通信有限公司研究院高级工程师,主要研究方向为人工智能、物联网等" ]
[ "庄子睿(1993− ),男,博士,北京邮电大学在站博士后,主要研究方向为网络智能路由、资源优化、机器学习等" ]
[ "杨红伟(1982− ),男,中国移动通信有限公司研究院项目经理,主要研究方向网络智能化、网络性能测量" ]
[ "陈丹阳(1995− ),女,中国移动通信有限公司研究院研究员,主要研究方向为数字孪生网络和意图网络" ]
[ "朱艳宏(1992− ),女,中国移动通信有限公司研究院算法模型研究员,主要研究方向为网络智能化、6G新技术" ]
[ "陆璐(1979− ),女,中国移动通信有限公司研究院网络与IT技术研究所副所长,CCSA TC5核心网组组长,主要研究方向为移动核心网、未来网络架构、边缘计算等" ]
[ "廖建新(1965− ),男,博士,北京邮电大学网络智能研究中心主任、教授、博士生导师,教育部长江学者特聘教授,主要研究方向为网络智能化、IMS/NGN增值业务技术" ]
网络出版日期:2021-09,
纸质出版日期:2021-09-20
移动端阅览
王敬宇, 周铖, 张蕾, 等. 知识定义的意图网络自治[J]. 电信科学, 2021,37(9):1-13.
Jingyu WANG, Cheng ZHOU, Lei ZHANG, et al. Knowledge-defined intent-based network autonomy[J]. Telecommunications science, 2021, 37(9): 1-13.
王敬宇, 周铖, 张蕾, 等. 知识定义的意图网络自治[J]. 电信科学, 2021,37(9):1-13. DOI: 10.11959/j.issn.1000-0801.2021220.
Jingyu WANG, Cheng ZHOU, Lei ZHANG, et al. Knowledge-defined intent-based network autonomy[J]. Telecommunications science, 2021, 37(9): 1-13. DOI: 10.11959/j.issn.1000-0801.2021220.
通信网络的复杂性决定了意图网络自治是无法一蹴而就的,关键在于以全局视角,打通多个网络管控问题域,将网络规律、机理、策略凝练为知识,构建全场景资源调配的知识空间,最终实现意图网络的泛在智能化。围绕6G意图网络,将知识定义智能作为关键使能技术,以提高意图网络的感知和决策闭环能力,构建自学习、自运维的意图网络。实现完全的6G网络自治是一个长期目标,需要分步实现,从提供重复执行操作的替代方案,到执行网络环境和网络设备状态的感知和监控,根据多种因素和策略做出决策,以及有效感知最终用户体验,直到最后网络能够感知运营商和用户的意图,自我优化和演进。
The complexity of the network determines that the autonomy of the intention network can’t be achieved at one go.The key is to break through multiple problem domains of network management and control from a global perspective
to summarize the network rules
mechanisms and strategies into knowledge
to build the knowledge space of resource allocation in the whole scene
and finally to realize the ubiquitous intelligence of the intention network.Focusing on 6G intention network
which takes knowledge-defined intelligence as the key enabling technology to improve the perception and decision-making closed-loop ability of intention network
and constructs a self-learning
self-operating and self-maintaining intention network.Achieving full autonomy in 6G networks is a long-term goal
which requires step by step evolvements
from providing repeat operation alternatives
to performing perception and monitoring on network environment and equipment states
to making decisions according to a number of factors and strategies
to effectively sensing end-user experience
and finally to a fully autonomous intelligent network that senses the intention of operators and users
self-optimizes and self-evolves.
张平 , 许晓东 , 韩书君 , 等 . 智简无线网络赋能行业应用 [J ] . 北京邮电大学学报 , 2020 , 43 ( 6 ): 1 - 9 .
ZHANG P , XU X D , HAN S J , et al . Entropy reduced mobile networks empowering industrial applications [J ] . Journal of Bei-jing University of Posts and Telecommunications , 2020 , 43 ( 6 ): 1 - 9 .
华为技术有限公司 . 智简网络(IDN)白皮书 [S ] . 2019 .
Huawei Technologies Co.,Ltd. . Intent-driven network white paper [S ] . 2019 .
ZEYDAN E , TURK Y . Recent advances in intent-based networking:a survey [C ] // Proceedings of 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring) . Piscataway:IEEE Press , 2020 : 1 - 5 .
SZIGETI T , ZACKS D ,, FALKNER M , ARENA S . Cisco digital network architecture:intent-based networking for the enterprise [M ] . New Jersey : Cisco Press , 2018 .
LAURIER W , . Blockchain value networks [C ] // Proceedings of 2019 IEEE Social Implications of Technology (SIT) and Information Management (SITIM) . Piscataway:IEEE Press , 2019 : 1 - 6 .
VALTANEN K , BACKMAN J , YRJÖLÄ S , . Creating value through blockchain powered resource configurations:analysis of 5G network slice brokering case [C ] // Proceedings of 2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW) . Piscataway:IEEE Press , 2018 : 185 - 190 .
闫实 , 彭木根 , 王文博 . 通信感知计算融合:6G 网络愿景与关键技术 [J ] . 北京邮电大学学报 , 2021 : 1 - 10 .
YAN S , PENG M G , WANG W B . Integration of communica-tion,sensing and computing:the vision and key technologies of 6G [J ] . Journal of Beijing University of Posts and Telecommu-nications , 2021 : 1 - 10 .
姚惠娟 , 陆璐 , 段晓东 . 算力感知网络架构与关键技术 [J ] . 中兴通讯技术 , 2021 , 27 ( 3 ): 7 - 11 .
YAO H J , LU L , DUAN X D . Architecture and key technolo-gies for computing-aware networking [J ] . ZTE Technology Journal , 2021 , 27 ( 3 ): 7 - 11 .
华为技术有限公司 . 自动驾驶网络解决方案白皮书 [R ] . 2020 .
Huawei Technologies Co.,Ltd. . ADN solution white paper (au-tonomous driving network) [R ] . 2020 .
CLARK D D , PARTRIDGE C , RAMMING J C , et al . A knowledge plane for the Internet [C ] // SIGCOMM '03:Proceedings of the 2003 Conference on Applications,Technologies,Architectures,and Protocols for Computer Communications , 2003 : 3 - 10 .
ETSI . Experiential networked intelligence (ENI); system architecture:ETSI GS ENI 005 [S ] . 2019 .
3GPP . Telecommunication management; study on scenarios for Intent driven management services for mobile networks:TR 28.812 [S ] . 2020 .
通信世界网 . 中国移动牵头 3GPP 成立自治网络分级标准项目 [N ] . 2020 .
Communication World Network . China Mobile leads 3GPP to es-tablish autonomous network classification standard project [N ] . 2020 .
ITU . Focus group on machine learning for future networks including 5G [S ] . 2020 .
Gartner . Innovation insight:intent-based networking systems [EB ] . 2017 .
GSMA . AI in network use cases in China [S ] . 2019 .
ITU-T . Framework for evaluating intelligence levels of future networks including IMT-2020:ITU-T Y.3173 [S ] . 2020 .
MESTRES A , RODRIGUEZ-NATAL A , CARNER J , et al . Knowledge-defined networking [J ] . ACM SIGCOMM Computer Communication Review , 2017 , 47 ( 3 ): 2 - 10 .
朱近康 . 知识+数据驱动学习:未来网络智能的基础 [J ] . 中兴通讯技术 , 2020 , 26 ( 4 ): 46 - 49 .
ZHU J K . Knowledge-and-data driven learning:foundation of future network intelligence [J ] . ZTE Technology Journal , 2020 , 26 ( 4 ): 46 - 49 .
ZHUANG Z R , WANG J Y , QI Q , et al . Toward greater intelligence in route planning:a graph-aware deep learning approach [J ] . IEEE Systems Journal , 2020 , 14 ( 2 ): 1658 - 1669 .
ZHUANG Z R , WANG J Y , QI Q , et al . A case-based decision system for routing in packet-switched networks [C ] // Proceedings of 2018 IEEE 37th International Performance Computing and Communications Conference (IPCCC) . Piscataway:IEEE Press , 2018 : 1 - 2 .
DONG T J , QI Q , WANG J Y , et al . Generative adversarial network-based transfer reinforcement learning for routing with prior knowledge [J ] . IEEE Transactions on Network and Service Management , 2021 , 18 ( 2 ): 1673 - 1689 .
ZHUANG Z R , WANG J Y , QI Q , et al . Adaptive and robust routing with Lyapunov-based deep RL in MEC networks enabled by blockchains [J ] . IEEE Internet of Things Journal , 2021 , 8 ( 4 ): 2208 - 2225 .
FU X Y , YU F R , WANG J Y , et al . Dynamic service function chain embedding for NFV-enabled IoT: a deep reinforcement learning approach[ [J ] . IEEE Transactions on Wireless Communications , 2020 , 19 ( 1 ): 507 - 519 .
WANG J Y , JING Y H , QI Q , et al . ALSR: an adaptive label screening and relearning approach for interval-oriented anomaly detection [J ] . Expert Systems With Applications , 2019 , 136 : 94 - 104 .
0
浏览量
754
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构