浏览全部资源
扫码关注微信
1. 上海理想信息产业(集团)有限公司,上海 201315
2. 北京邮电大学,北京 100876
[ "张亮(1991− ),男,上海理想信息产业(集团)有限公司软件产品研发工程师,主要研究方向为人工智能技术、自然语言处理、大数据挖掘与分析" ]
[ "代晓菊(1990− ),女,上海理想信息产业(集团)有限公司软件产品研发工程师,主要研究方向为人工智能技术、自然语言处理、大数据挖掘与分析" ]
[ "郑荣(1981− ),男,上海理想信息产业(集团)有限公司软件产品研发高级工程师,主要研究方向为人工智能技术、自然语言处理、大数据挖掘与分析" ]
[ "贺同泽(1996− ),男,北京邮电大学硕士生,主要研究方向为推荐系统、自然语言处理、大数据挖掘与分析" ]
网络出版日期:2021-11,
纸质出版日期:2021-11-20
移动端阅览
张亮, 代晓菊, 郑荣, 等. 多模型融合的客服工单文本分类方法的研究与实现[J]. 电信科学, 2021,37(11):86-96.
Liang ZHANG, Xiaoju DAI, Rong ZHENG, et al. Research and implementation of text classification method for customer service orders based on multi-model fusion[J]. Telecommunications science, 2021, 37(11): 86-96.
张亮, 代晓菊, 郑荣, 等. 多模型融合的客服工单文本分类方法的研究与实现[J]. 电信科学, 2021,37(11):86-96. DOI: 10.11959/j.issn.1000-0801.2021236.
Liang ZHANG, Xiaoju DAI, Rong ZHENG, et al. Research and implementation of text classification method for customer service orders based on multi-model fusion[J]. Telecommunications science, 2021, 37(11): 86-96. DOI: 10.11959/j.issn.1000-0801.2021236.
电信呼叫中心客服在人工进行工单分类时存在归档耗时长、效率低、准确率难以保障的问题,但此场景下类别数量多,且类别间具有层级关联,导致传统文本分类方法准确率较低。针对此问题,提出了一种基于多模型融合的文本分类方法,根据不同层级的数据特点使用不同模型进行分类,考虑了类别的层级关联以提升准确率,并验证了此方法的有效性,可以优化客服生产系统运营流程,加快现场人工客服响应能效,提升客服热线整体运营效率,实现人工智能注智生产。
Due to the large amount of order categories and their hierarchical associations
traditional manual order classification method of customer service in telecom call center has the problems of long archiving time
low efficiency and unsustainable accuracy.To solve this problem
a novel text classification algorithm based on multi-model fusion was proposed
which intelligently classify orders with multiple models based on data characteristics and their hierarchical associations
the effectiveness of this method was verified.The current manual operation process was optimized and operation efficiency was enhanced
which support the intelligent transformation and upgradation of existing customer service system.
KIM Y , . Convolutional neural networks for sentence classification [C ] // Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) . USA:Association for Computational Linguistics , 2014 .
MA M B , HUANG L , ZHOU B W , et al . Dependency-based convolutional neural networks for sentence embedding [C ] // Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2:Short Papers) . USA:Association for Computational Linguistics , 2015 .
Devlin J , Chang M W , Lee K , et al . BERT:pre-training of deep bidirectional transformers for language understanding [EB ] . 2018 .
ZHAO Z W , WU Y Z . Attention-based convolutional neural networks for sentence classification [C ] // Interspeech 2016 .[S.l:s.n. ] , 2016 .
SHIMURA K , LI J Y , FUKUMOTO F . HFT-CNN:learning hierarchical category structure for multi-label short text categorization [C ] // Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing . USA:Association for Computational Linguistics , 2018 .
CHEN T Q , GUESTRIN C . XGBoost:a scalable tree boosting system [C ] // Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . New York:ACM Press , 2016 : 785 - 794 .
ZHANG Z Y , HAN X , LIU Z Y , et al . ERNIE:enhanced language representation with informative entities [C ] // Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics . USA:Association for Computational Linguistics , 2019 .
KALCHBRENNER N , GREFENSTETTE E , BLUNSOM P . A convolutional neural network for modelling sentences [C ] // Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers) . USA:Association for Computational Linguistics , 2014 .
YIN W P , SCHÜTZE H ,, . Multichannel variable-size convolution for sentence classification [C ] // Proceedings of the Nineteenth Conference on Computational Natural Language Learning . USA:Association for Computational Linguistics , 2015 .
0
浏览量
396
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构