浏览全部资源
扫码关注微信
[ "徐孟强(1972− ),男,中国移动通信集团浙江有限公司宁波分公司总经理,主要研究方向为通信领域" ]
网络出版日期:2021-11,
纸质出版日期:2021-11-20
移动端阅览
徐孟强. 基于AI深度学习的面向业务5G基站节能系统研究[J]. 电信科学, 2021,37(11):143-151.
Mengqiang XU. Research on business oriented 5G base station energy saving system based on AI deep learning[J]. Telecommunications science, 2021, 37(11): 143-151.
徐孟强. 基于AI深度学习的面向业务5G基站节能系统研究[J]. 电信科学, 2021,37(11):143-151. DOI: 10.11959/j.issn.1000-0801.2021249.
Mengqiang XU. Research on business oriented 5G base station energy saving system based on AI deep learning[J]. Telecommunications science, 2021, 37(11): 143-151. DOI: 10.11959/j.issn.1000-0801.2021249.
由于5G业务发展,5G基站数量增多,造成运营商的电费成本急剧增加,节能降耗成为运营商的可持续发展需求。在研究主流5G基站节能模式及多方位5G节能方案的基础上,提出了基于多种AI算法的5G基站节能系统,通过单SIM卡级别的高精度业务识别,在保证5G重要业务等各类型业务稳定运行的基础上,实现了最佳策略的5G基站柔性节能。
Due to the needs of 5G business development
the number of 5G base stations has increased
resulting in a sharp increase in the electricity cost of operators.Energy saving and consumption reduction has become the sustainable development demand of operators.Based on the research of mainstream 5G base station energy-saving mode and multi-directional 5G energy-saving scheme
a 5G base station energy-saving system based on a variety of AI algorithms was proposed.Through the high-precision service identification at the level of single SIM card
the best strategy of 5G base station flexible energy-saving was realized on the basis of ensuring the stable operation of 5G important services and other types of services.
戴春伟 . 5G基站能耗管控与环境影响 [J ] . 江苏通信 , 2020 , 36 ( 4 ): 29 - 32 .
DAI C W . 5G base station energy consumption control and environmental impact [J ] . Jiangsu Communication , 2020 , 36 ( 4 ): 29 - 32 .
古大鹏 , 刘培莹 , 任丽涛 . 天津移动 5G 基站智能节电研究 [C ] // 2020年中国通信能源会议论文集 . 广州 , 2020 : 438 - 440 .
GU D P , LIU P Y , REN L T . Research on intelligent power saving of 5G base station by Tianjin Mobile [C ] // Proceedings of 2020 China communication energy conference . Guangzhou , 2020 : 438 - 440 .
吕婷 , 张猛 , 曹亘 , 等 . 5G基站节能技术研究 [J ] . 邮电设计技术 , 2020 ( 5 ): 46 - 50 .
LÜ T , ZHANG M , CAO G , et al . Research on energy saving technology of 5G base station [J ] . Designing Techniques of Posts and Telecommunications , 2020 ( 5 ): 46 - 50 .
张青 . AI技术在5G基站节能应用的展望 [J ] . 广东通信技术 , 2019 , 39 ( 10 ): 29 - 32 .
ZHANG Q . Prospect of AI technology in 5G base station energy saving application [J ] . Guangdong Communication Technology , 2019 , 39 ( 10 ): 29 - 32 .
王耀祖 , 蔡宗平 , 张洪伟 . 基于AI的4G/5G基站节能解决方案应用 [A ] . TD产业联盟、中国电子科技集团公司第七研究所《移动通信》杂志社 . 5G网络创新研讨会(2020)论文集 [C ] // TD产业联盟、中国电子科技集团公司第七研究所《移动通信》杂志社:中国电子科技集团公司第七研究所《移动通信》杂志社 , 2020 : 6 .
WANG Y Z , CAI Z P , ZHANG H W . Application of energy saving solution for 4G/5G base station based on AI [A ] . TD Industry Alliance, Mobile Communications . Proceedings of 5G Network Innovation Seminar (2020) [C ] // TD Industry Alliance,Mobile Communications:Mobile Communications , 2020 : 6 .
0
浏览量
539
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构