浏览全部资源
扫码关注微信
1. 宁波大学科学技术学院,浙江 宁波 315300
2. 宁波大学信息科学与工程学院,浙江 宁波 315211
3. 中国科学院声学研究所,北京 100190
4. 中国科学院大学,北京 100190
5. 宁波奥克斯高科技有限公司,浙江 宁波 315034
[ "吕新荣(1976- ),男,博士,宁波大学科学技术学院讲师,主要研究方向为电力线通信、无线通信、稀疏信号处理、压缩感知" ]
[ "李有明(1963- ),男,宁波大学信息科学与工程学院教授、博士生导师,主要研究方向为宽带通信、电力线通信、协作中继、认知无线电等" ]
[ "吴永清(1968- ),男,中国科学院声学研究所研究员,中国科学院大学教授、博士生导师,主要研究方向为水声通信、水下目标检测和识别等" ]
[ "唐小波(1976- ),男,宁波奥克斯高科技有限公司电力研发中心科技管理部总监,主要研究方向为电力线通信" ]
网络出版日期:2022-02,
纸质出版日期:2022-02-20
移动端阅览
吕新荣, 李有明, 吴永清, 等. 基于稀疏贝叶斯学习的MIMO-OFDM电力线通信系统接收机设计[J]. 电信科学, 2022,38(2):25-34.
Xinrong LYU, Youming LI, Yongqing WU, et al. Receiver design of sparse Bayesian learning based MIMO-OFDM power line communication system[J]. Telecommunications science, 2022, 38(2): 25-34.
吕新荣, 李有明, 吴永清, 等. 基于稀疏贝叶斯学习的MIMO-OFDM电力线通信系统接收机设计[J]. 电信科学, 2022,38(2):25-34. DOI: 10.11959/j.issn.1000-0801.2022036.
Xinrong LYU, Youming LI, Yongqing WU, et al. Receiver design of sparse Bayesian learning based MIMO-OFDM power line communication system[J]. Telecommunications science, 2022, 38(2): 25-34. DOI: 10.11959/j.issn.1000-0801.2022036.
丰富的脉冲噪声干扰对基于MIMO-OFDM技术的电力线通信系统接收机设计带来了巨大挑战。针对这个问题,提出了一种联合估计电力线信道和脉冲噪声的接收机设计方案。该方案主要利用电力信道多径模型参数在频域上的稀疏性和脉冲噪声在时域上的稀疏性特征,将待估计信道模型参数和脉冲噪声联合视作一个稀疏向量,同时利用MIMO系统的空间相关性,构建了一个基于多测量向量的压缩感知模型,并引入多测量向量稀疏贝叶斯学习理论,设计了一种联合估计 MIMO 信道模型参数和脉冲噪声的方法。仿真结果表明,与传统的MIMO信道估计与脉冲噪声抑制相互分离的接收机方案相比,新方法在估计性能和误比特率性能上有明显提升。
The rich impulsive noise in the power line channel poses a huge challenge to the design of MIMO-OFDM transceiver.To solve this problem
a design scheme that can jointly estimate the channel and impulsive noise was proposed
which exploited the parametric sparsity of the classical multipath model and the sparsity of the time domain impulsive noise.In this scheme
the unknown channel model parameters and the impulsive noise were jointly regarded as a sparse vector.By observing the spatial correlation of MIMO system
a compressed sensing model based on multiple measurement vectors was constructed.The multiple response sparse Bayesian learning theory was introduced to jointly estimate the MIMO channel parameters and impulsive noise.The simulation results show that
compared with the traditional receiver scheme that considers MIMO channel estimation and impulsive noise suppression separately
the receiver proposed has a significant improvement in channel estimation performance and bit error rate performance.
BERGER L T , SCHWAGER A , PAGANI P , et al . MIMO power line communications [J ] . IEEE Communications Surveys& Tutorials , 2015 , 17 ( 1 ): 106 - 124 .
BAI T , ZHANG H M , WANG J J , et al . Fifty years of noise modeling and mitigation in power-line communications [J ] . IEEE Communications Surveys & Tutorials , 2021 , 23 ( 1 ): 41 - 69 .
ZHIDKOV S V . Analysis and comparison of several simple impulsive noise mitigation schemes for OFDM receivers [J ] . IEEE Transactions on Communications , 2008 , 56 ( 1 ): 5 - 9 .
JUWONO F H , GUO Q H , CHEN Y F , et al . Linear combining of nonlinear preprocessors for OFDM-based power-line communications [J ] . IEEE Transactions on Smart Grid , 2016 , 7 ( 1 ): 253 - 260 .
LIN J , NASSAR M , EVANS B L . Impulsive noise mitigation in powerline communications using sparse Bayesian learning [J ] . IEEE Journal on Selected Areas in Communications , 2013 , 31 ( 7 ): 1172 - 1183 .
呙涛 , 胡国荣 . 基于稀疏贝叶斯学习的MIMO电力线脉冲噪声消除 [J ] . 电力系统自动化 , 2014 , 38 ( 14 ): 95 - 100 , 135 .
GUO T , HU G R . Impulsive noise mitigation on MIMO power line based on sparse Bayesian learning [J ] . Automation of Electric Power Systems , 2014 , 38 ( 14 ): 95 - 100 , 135 .
何业慎 , 梁琨 . 一种压缩感知电力线信道估计机制 [J ] . 电信科学 , 2016 , 32 ( 11 ): 77 - 81 .
HE Y S , LIANG K . A power line channel estimation mechan-ism based on compressed sensing [J ] . Telecommunications Science , 2016 , 32 ( 11 ): 77 - 81 .
MEHBOOB A , ZHANG L , KHANGOSSTAR J , et al . Joint channel and impulsive noise estimation for OFDM based power line communication systems using compressed sensing [C ] // Proceedings of 2013 IEEE 17th International Symposium on Power Line Communications and Its Applications . Piscataway:IEEE Press , 2013 : 203 - 208 .
NASSAR M , SCHNITER P , EVANS B L . A factor graph approach to joint OFDM channel estimation and decoding in impulsive noise environments [J ] . IEEE Transactions on Signal Processing , 2014 , 62 ( 6 ): 1576 - 1589 .
CHIEN Y R . Iterative channel estimation and impulsive noise mitigation algorithm for OFDM-based receivers with application to power-line communications [J ] . IEEE Transactions on Power Delivery , 2015 , 30 ( 6 ): 2435 - 2442 .
吕新荣 , 李有明 , 余明宸 . 基于稀疏贝叶斯学习的电力线载波通信接收机设计 [J ] . 电信科学 , 2017 , 33 ( 9 ): 92 - 99 .
LYU X R , LI Y M , YU M C . Design of transceivers based on sparse Bayesian learning for power line carrier communica-tions [J ] . Telecommunications Science , 2017 , 33 ( 9 ): 92 - 99 .
赵闻 , 张捷 , 李倩 , 等 . MIMO电力线载波通信中基于压缩感知的信道与脉冲噪声联合估计方法 [J ] . 通信技术 , 2020 , 53 ( 9 ): 2101 - 2107 .
ZHAO W , ZHAGN J , LI Q , et al . Joint estimation of channel and impulse noise based on compressed sensing in MIMO power line carrier communication [J ] . Communications Technology , 2020 , 53 ( 9 ): 2101 - 2107 .
ZIMMERMANN M , DOSTERT K . A multipath model for the powerline channel [J ] . IEEE Transactions on Communications , 2002 , 50 ( 4 ): 553 - 559 .
DUARTE M F , ELDAR Y C . Structured compressed sensing:from theory to applications [J ] . IEEE Transactions on Signal Processing , 2011 , 59 ( 9 ): 4053 - 4085 .
HASHMAT R , PAGANI P , ZEDDAM A , et al . A channel model for multiple input multiple output in-home power line networks [C ] // Proceedings of IEEE International Symposium on Power Line Communications & its Applications . Piscataway:IEEE Press , 2011 : 35 - 41 .
LIU S C , YANG F , DING W B , et al . Impulsive noise cancellation for MIMO-OFDM PLC systems:a structured compressed sensing perspective [C ] // Proceedings of 2016 IEEE Global Communications Conference . Piscataway:IEEE Press , 2016 : 1 - 6 .
CHO Y S , KIM J , YANG W Y , et al . MIMO-OFDM Wireless Communications with MATLAB® [M ] . Chichester : John Wiley& Sons , 2010 .
DING W B , LU Y , YANG F , et al . Spectrally efficient CSI acquisition for power line communications:a Bayesian compressive sensing perspective [J ] . IEEE Journal on Selected Areas in Communications , 2016 , 34 ( 7 ): 2022 - 2032 .
WIPF D P , RAO B D . An empirical Bayesian strategy for solving the simultaneous sparse approximation problem [J ] . IEEE Transactions on Signal Processing , 2007 , 55 ( 7 ): 3704 - 3716 .
TIPPING M E . Sparse Bayesian learning and the relevance vector machine [J ] . Journal of Machine Learning Research , 2001 , 1 ( 3 ): 211 - 244 .
0
浏览量
145
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构