浏览全部资源
扫码关注微信
1. 中国移动通信有限公司研究院,北京 100053
2. 中国移动通信集团有限公司,北京 100033
[ "张苗苗(1993- ),女,中国移动通信有限公司研究院工程师,主要研究方向为无线网络智能化技术及算法" ]
[ "赵皓(1991- ),男,中国移动通信有限公司研究院工程师,主要研究方向为无线网络智能化技术" ]
[ "周岩(1991- ),男,中国移动通信有限公司研究院工程师,主要研究方向为无线网络智能化技术" ]
[ "张阳(1975- ),男,中国移动通信集团有限公司网络事业部经理,主要研究方向为无线网络优化及相关技术" ]
[ "余立(1981- ),男,中国移动通信有限公司研究院高级工程师,主要研究方向为前沿移动通信技术、网络智能化、大数据和IT技术" ]
[ "梁燕萍(1986- ),女,中国移动通信有限公司研究院工程师,主要研究方向为网络智能化技术" ]
[ "冯春杰(1986- ),男,现就职于中国移动通信集团有限公司,主要研究方向为无线网络优化及节能技术" ]
网络出版日期:2022-11,
纸质出版日期:2022-11-20
移动端阅览
张苗苗, 赵皓, 周岩, 等. 基于长短时预测的基站节能策略[J]. 电信科学, 2022,38(11):153-162.
Miaomiao ZHANG, Hao ZHAO, Yan ZHOU, et al. A long-time & short-time prediction based 5G base station energy-saving policy[J]. Telecommunications science, 2022, 38(11): 153-162.
张苗苗, 赵皓, 周岩, 等. 基于长短时预测的基站节能策略[J]. 电信科学, 2022,38(11):153-162. DOI: 10.11959/j.issn.1000-0801.2022043.
Miaomiao ZHANG, Hao ZHAO, Yan ZHOU, et al. A long-time & short-time prediction based 5G base station energy-saving policy[J]. Telecommunications science, 2022, 38(11): 153-162. DOI: 10.11959/j.issn.1000-0801.2022043.
随着移动通信技术的发展和5G商用建设的加快,5G功耗将继续大幅度提升运营成本。如何在保障业务体验及设备安全的基础上实现节能最大化,始终是产业界研究的焦点之一。针对网络结构复杂、站型丰富等挑战,提出了以“感知、预测、分析、决策”AI技术为核心的节能策略生成、闭环安全保障技术。基于离线数据,验证了预测技术效果,达到了基站节能误关率低于2%、召回率不低于84%的效果。进一步的实践应用效果证明,在保障网络质量稳定的前提下,能够有效挖掘更多节能空间和节能时长,显著提升节能量,达到降本增效的目的。
With the development of the mobile communication technology and the acceleration of 5G commercial network deployment
energy consumption of 5G
which will continue to raise the operating expense significantly.How to maximize the energy efficiency while ensuring service experience and equipment safety has always been one of the research focus in the industry.With the challenges including complexity of network architecture and variety of base station types
an AI-based energy-saving technology including policy generation and closed-loop security assurance of “perception
prediction
analysis
and decision” was introduced.After calibration and validation based on the offline dataset
the false-switch-off rate is less than 2%
and the recall rate is not fewer than 84%.Further study shows that the technology has greater potential on energy-saving.
刘思怡 . 绿色无线移动通信技术的创新思考 [J ] . 科学技术创新 , 2017 ( 33 ): 95 - 96 .
LIU S Y . Innovative thinking of green wireless mobile communication technology [J ] . Scientific and Technological Innovation , 2017 ( 33 ): 95 - 96 .
岑祺 . 5G 基站市电建设及改造方案 [J ] . 信息通信 , 2019 , 32 ( 12 ): 210 - 213 .
CEN Q . 5G base station electricity construction and renovation plan [J ] . Information and Communications , 2019 , 32 ( 12 ): 210 - 213 .
OH E , KRISHNAMACHARI B , LIU X , et al . Toward dynamic energy-efficient operation of cellular network infrastructure [J ] . IEEE Communications Magazine , 2011 , 49 ( 6 ): 56 - 61 .
LOPEZ-PEREZ D , DOMENICO A D , PIOVESAN N , et al . A survey on 5G radio access network energy efficiency:massive MIMO,lean carrier design,sleep modes,and machine learning [J ] . arXiv preprint arXiv:2101.11246 , 2021 .
易芝玲 , 孙奇 , 吴杰 , 等 . 人工智能在5G无线网络中的标准与应用进展 [J ] . 信息通信技术与政策 , 2020 ( 9 ): 23 - 30 .
YI Z L , SUN Q , WU J , et al . AI in 5G networks—usage scenario and standardization progress [J ] . Information and Communications Technology and Policy , 2020 ( 9 ): 23 - 30 .
ZHANG X , YOU J L . A gated dilated causal convolution based encoder-decoder for network traffic forecasting [J ] . IEEE Access , 2020 , 8 : 6087 - 6097 .
ZHANG C Y , PATRAS P . Long-term mobile traffic forecasting using deep spatio-temporal neural networks [C ] // Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing . New York:ACM , 2018 : 231 - 240 .
洪伟 , 张明 . 最小化路测方法及装置,通信设备和存储介质:CN112352448A [P ] . 2021 .
HONG W , ZHANG M . Minimization of drive test method and device,communication equipment and storage medium:CN112352- 448A [P ] . 2021 .
刘涛 . 移动通信基站的综合节能 [J ] . 电信工程技术与标准化 , 2006 , 19 ( 6 ): 32 - 34 .
LIU T . Economize of mobile telecommunication base station [J ] . Telecom Engineering Technics and Standardization , 2006 , 19 ( 6 ): 32 - 34 .
CRIPPS S C . RF power amplifiers for wireless communications [J ] . IEEE Microwave Magazine , 2000 , 1 ( 1 ): 64 .
林耀朋 , 张旭 , 吴军 . 一种石墨烯涂层散热板:CN103465539A [P ] . 2013 .
LIN Y P , ZHANG X , WU J . Heat dissipation plate with graphene coating:CN103465539A [P ] . 2013 .
赛迪顾问 . 5G产业发展白皮书(2020) [R ] . 2020 .
CCID Consulting . White paper on 5G industry development(2020) [R ] . 2020 .
奉媛 . 智能符号关断技术在 LTE 系统的应用研究 [J ] . 电信技术 , 2017 ( 02 ): 11 - 12 , 15 .
FENG Y . Application research of intelligent symbol turn-off technology in LTE system [J ] . Telecommunications Technology , 2017 ( 02 ): 11 - 12 , 15 .
邢剑卿 . NR 基站智能节能技术应用研究 [J ] . 广东通信技术 , 2020 , 40 ( 5 ): 46 - 49 .
XING J Q . Research on application of intelligent energy-saving technology for NR base station [J ] . Guangdong Communication Technology , 2020 , 40 ( 5 ): 46 - 49 .
周普成 , 蔡文科 . 5G基站技术节能策略分析与研究 [J ] . 通信电源技术 , 2021 , 38 ( 2 ): 181 - 184 .
ZHOU P C , CAI W K . Analysis and research on technology energy saving strategy of 5G base station [J ] . Telecom Power Technology , 2021 , 38 ( 2 ): 181 - 184 .
张志荣 , 许晓航 , 朱雪田 , 等 . 基于AI的5G基站节能技术研究 [J ] . 电子技术应用 , 2019 , 45 ( 10 ): 1 - 4 .
ZHANG Z R , XU X H , ZHU X T , et al . Research on energy saving technology of 5G base station based on AI [J ] . Application of Electronic Technique , 2019 , 45 ( 10 ): 1 - 4 .
BOX G E P , JENKINS G M . Time sense analysis:forecasting and control [J ] . Jouranl of Time , 2010 , 31 ( 3 ).
HOCHREITER S , SCHMIDHUBER J . Long short-term memory [J ] . Neural Computation , 1997 , 9 ( 8 ): 1735 - 1780 .
聂锋 , 罗清 . Prophet在电信业务预测中的应用 [J ] . 环球市场 , 2018 .
NIE F , LUO Q . Application of prophet in telecom business forecasting [J ] . The Global Market , 2018 .
徐丹 , 曾宇 , 孟维业 , 等 . AI使能的5G节能技术 [J ] . 电信科学 , 2021 , 37 ( 5 ): 32 - 41 .
XU D , ZENG Y , MENG W Y , et al . AI-enabled 5G energy-saving technology [J ] . Telecommunications Science , 2021 , 37 ( 5 ): 32 - 41 .
SOLIMAN S S , SONG B . Fifth generation (5G) cellular and the network for tomorrow:cognitive and cooperative approach for energy savings [J ] . Journal of Network and Computer Applications , 2017 , 85 : 84 - 93 .
GAO Y , CHEN J J , LIU Z , et al . Machine learning based energy saving scheme in wireless access networks [C ] // Proceedings of 2020 International Wireless Communications and Mobile Computing (IWCMC) . Piscataway:IEEE Press , 2020 : 1573 - 1578 .
ANDERSON T W . Serial correlation [M ] . John Wiley & Sons,Inc. , 2011 .
CHEN T Q , GUESTRIN C . XGBoost:a scalable tree boosting system [J ] . CoRR , 2016 .
WOLPERT D H . Stacked generalization [J ] . Neural Networks , 1992 , 5 ( 2 ): 241 - 259 .
LI R P , ZHAO Z F , ZHOU X , et al . Intelligent 5G:when cellular networks meet artificial intelligence [J ] . IEEE Wireless Communications , 2017 , 24 ( 5 ): 175 - 183 .
0
浏览量
229
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构