浏览全部资源
扫码关注微信
1. 浙江工商大学信息与电子工程学院(萨塞克斯人工智能学院),浙江 杭州 310018
2. 中国电信股份有限公司浙江分公司,浙江 杭州 310020
[ "李奕江(1997- ),男,浙江工商大学信息与电子工程学院(萨塞克斯人工智能学院)硕士生,主要研究方向为新一代网络技术、人工智能应用" ]
[ "叶会标(1973- ),男,中国电信股份有限公司浙江分公司云网监控维护中心核心网室主任,主要研究方向为中国电信4G、5G核心网、VoLTE网络的运营管理等" ]
[ "谢仁华(1997- ),男,浙江工商大学信息与电子工程学院(萨塞克斯人工智能学院)硕士生,主要研究方向为新一代网络技术、人工智能应用" ]
[ "楼佳丽(1998- ),女,浙江工商大学信息与电子工程学院(萨塞克斯人工智能学院)硕士生,主要研究方向为新一代网络技术、人工智能应用" ]
[ "庄丹娜(1995- ),女,浙江工商大学信息与电子工程学院(萨塞克斯人工智能学院)硕士生,主要研究方向为新一代网络技术、人工智能应用" ]
[ "李传煌(1980- ),男,博士,浙江工商大学信息与电子工程学院(萨塞克斯人工智能学院)教授、硕士生导师,主要研究方向为软件定义网络、开放可编程网络、边缘计算、人工智能应用" ]
网络出版日期:2022-03,
纸质出版日期:2022-03-20
移动端阅览
李奕江, 叶会标, 谢仁华, 等. 基于图神经网络的网络性能智能预测[J]. 电信科学, 2022,38(3):143-157.
Yijiang LI, Huibiao YE, Renhua XIE, et al. Intelligent prediction method of network performance based on graph neural network[J]. Telecommunications science, 2022, 38(3): 143-157.
李奕江, 叶会标, 谢仁华, 等. 基于图神经网络的网络性能智能预测[J]. 电信科学, 2022,38(3):143-157. DOI: 10.11959/j.issn.1000-0801.2022062.
Yijiang LI, Huibiao YE, Renhua XIE, et al. Intelligent prediction method of network performance based on graph neural network[J]. Telecommunications science, 2022, 38(3): 143-157. DOI: 10.11959/j.issn.1000-0801.2022062.
传统网络性能预测技术存在网络状态获取不够全面及网络性能评估准确性欠佳等问题,利用图神经网络学习推理网络关系数据的特点,结合捕获的网络全局信息,提出了一种基于图神经网络的网络性能智能预测方法。通过网络系统抽象及网络性能建模,将复杂的网络信息转化为形式化的图数据进行描述,利用图空域卷积处理图网络节点的消息传递过程,实现网络信息之间的关系推理,研究了实现网络性能预测的图神经网络模型,提出了一种能处理流量矩阵、网络拓扑、路由策略、节点配置的图神经网络体系结构,最后通过实验论证了模型能更好地实现包括时延、抖动和丢包率的网络性能的准确预测。
There are some problems in the traditional network performance prediction technology
such as incomplete network state acquisition and poor accuracy of network performance evaluation.Combined with the characteristics of graph neural network learning and reasoning network relational data and the captured global information of the network
on the basis of the current network performance prediction methods
an intelligent prediction method of network performance based on graph neural network was proposed.Aiming at the complex network information
through the research of network system abstraction and network performance modeling
the network information can be transformed into the graph space convolution was used to process the message passing process of graph network nodes to realize the relationship reasoning between network information.The graph neural network model for network performance prediction was studied
and a graph neural network architecture which could deal with traffic matrix
network topology
routing strategy and node configuration was proposed.Finally
the experiments show that the model can better achieve accurate prediction of the network performance including delay
jitter and packet loss rate.
2020年中国互联网发展趋势报告 [EB ] . 2020 .
Report on China's Internet Development Trend in 2020 [EB ] . 2020 .
LIU L K , ZHANG H L , SHI J T , et al . I2P anonymous communication network measurement and analysis [C ] // Smart Computing and Communication,4th International Conference . Switzerland:Springer Cham , 2019 : 105 - 115 .
CHEN Y , HU J Y , ZHAO H , et al . Measurement and analysis of the swarm social network with tens of millions of nodes [J ] . IEEE Access , 2018 :1.
戴冕 , 程光 , 周余阳 . 软件定义网络的测量方法研究 [J ] . 软件学报 , 2019 ( 6 ): 1853 - 1874 .
DAI M , CHENG G , ZHOU Y Y . Survey on measurement method in software-defined networking [J ] . Journal of Software , 2019 ( 6 ): 1853 - 1874 .
JIA S Y , LUCKIE M , HUFFAKER B , et al . Tracking the deployment of IPv6:topology,routing and performance [J ] . Computer Networks , 2019 ( 165 ): 106947 .
马卫国 , 郎为民 , 张寅 , 等 . 虚拟化网络功能测量问题研究 [J ] . 电信快报 , 2020 ( 3 ): 1 - 5 .
MA W G , LANG W M , ZHANG Y , et al . Research on function measurement of virtual network [J ] . Telecommunications Information , 2020 ( 3 ): 1 - 5 .
辛建芳 , 朱琦 , 梁广俊 , 等 . 基于排队论的 D2D 蜂窝异构网络的性能分析 [J ] . 信号处理 , 2018 , 34 ( 4 ): 391 - 399 .
XIN J F , ZHU Q , LIANG G J , et al . Performance analysis based on queuing theory for D2D underlaying cellular networks [J ] . Journal of Signal Processing , 2018 , 34 ( 4 ): 391 - 399 .
熊兵 , 左明科 , 黎维 , 等 . 面向软件定义核心网的 OpenFlow分组转发优先制排队模型研究 [J ] . 电子学报 , 2019 , 47 ( 10 ): 2040 - 2049 .
XIONG B , ZUO M K , LI W , et al . A prioritized queueing model of OpenFlow packet forwarding in software-defined core networks [J ] . Acta Electronica Sinica , 2019 , 47 ( 10 ): 2040 - 2049 .
李庆华 , 陈志刚 , 张连明 , 等 . 基于网络演算的无线自组网QoS性能确定上界研究 [J ] . 通信学报 , 2008 ( 29 ): 32 - 39 .
LI Q H , CHEN Z G , ZHANG L M , et al . Deterministic upper bounds on QoS performance about wireless ad hoc network based on network calculus [J ] . Journal on Communications , 2008 ( 29 ): 32 - 39 .
任双印 . 基于网络演算的软件定义网络服务质量研究 [D ] . 长沙:国防科技大学 , 2018 .
REN S Y . A software defined network QoS research based on network calculus [D ] . Chang sha:National University of Defense Technology , 2018 .
GEYER F , BONDORF S . DeepTMA:predicting effective contention models for network calculus using graph neural networks [C ] // IEEE INFOCOM 2019-IEEE Conference on Computer Communications . Piscataway:IEEE Press , 2019 .
XIAO S H , HE D D , GONG Z B . Deep-Q:traffic-driven QoS inference using deep generative network [C ] // The 2018 Workshop on Network Meets AI & ML . New York:ACM Press , 2018 : 67 - 73 .
GEYER F , . DeepComNet:Performance evaluation of network topologies using graph-based deep learning [C ] // Proceedings of the 11th EAI International Conference on Performance Evaluation Methodologies and Tools . New York:ACM Press , 2017 .
NAKASHIMA M , SIM A , KIM J . Evaluation of deep learning models for network performance prediction for scientific facilities [C ] // HPDC'20:The 29th International Symposium on High-Performance Parallel and Distributed Computing . New York:ACM Press , 2020 .
SHI ZP , LI J , WU CT . DeepDDoS:online DDoS attack detection [C ] // 2019 IEEE Global Communications Conference (GLOBECOM) . Piscataway:IEEE Press , 2020 .
GORI M , MONFARDINI G , SCARSELLI F . A new model for learning in graph domains [C ] // IEEE International Joint Conference on Neural Networks . Piscataway:IEEE Press , 2005 .
SCARSELLI F , GORI M , TSOI A C , et al . The graph neural network model [J ] . IEEE Transactions on Neural Networks , 2009 , 20 ( 1 ): 61 - 80 .
XIAN XF , FANG LG , SUN SM . ReGNN:A repeat aware graph neural network for session-based recommendations [J ] . IEEE Access , 2020 , 8 : 98518 - 98525 .
RAGESH R , SELLAMANICKAM S , LINGAM V , et al . A graph convolutional network composition framework for semi-supervised classification [EB ] . 2020 .
WANG ZY , GOMBOLAY M . Learning scheduling policies for multi-robot coordination with graph attention networks [J ] . IEEE Robotics and Automation Letters , 2020 , 5 ( 3 ): 4509 - 4516 .
FAN S,HUANG B,Labeled graph generative adversarial networks [EB ] . 2019 .
GUO SN , LIN YF , FENG N , et al . Attention based spatial-temporal graph convolutional networks for traffic flow forecasting [C ] // Proceedings of the AAAI Conference on Artificial Intelligence,Piscataway:IEEE Press , 2019 ( 33 ): 922 - 929 .
PENG H , WANG HF , DU BW , et al . Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting [J ] . Information Sciences , 2020 ( 521 ): 277 - 290 .
GILMER J , SCHOENHOLZ S S , RILEY P F , et al . Neural message passing for quantum chemistry [C ] // Proceedings of the 34th International Conference on Machine Learning . Cambridge:JMLR , 2017 ( 70 ): 1263 - 1272 .
RUSEK K , JOSÉ SUÁREZ-VARELA , MESTRES A , et al . Unveiling the potential of graph neural networks for network modeling and optimization in SDN [C ] // Proceedings of the 2019 ACM Symposium on SDN Research . New York:ACM Press , 2019 : 140 - 151 .
BENGIO S , VINYALS O , JAITLY N , et al . Scheduled sampling for sequence prediction with recurrent neural networks [C ] // Advances in Neural Information Processing Systems.New York:Curran Associates,Inc . , 2015 : 1171 - 1179 .
HUANG XH , ZENG M , XIE K . Intelligent traffic control for QoS optimization in hybrid SDNs [J ] . Computer Networks , 2021 , 189 ( 2 ): 107877 .
CLARK D D , PARTRIDGE C , RAMMING J C , et al . A knowledge plane for the internet [C ] // Conference on Applications . New York:ACM Press , 2003 : 3 - 10 .
0
浏览量
595
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构