浏览全部资源
扫码关注微信
1. 上海交通大学电子信息与电气工程学院,上海 200240
2. 系统控制与信息处理教育部重点实验室,上海 200240
3. 上海工业智能管控工程技术研究中心,上海 200240
[ "伏玉笋(1972- ),男,博士,上海交通大学助理研究员,主要研究方向为无线通信与系统、无线网联智能系统、工业互联网与安全、智能制造等" ]
[ "唐金辉(1999- ),男,上海交通大学硕士生,主要研究方向为工业通信系统与安全可信" ]
网络出版日期:2022-09,
纸质出版日期:2022-09-20
移动端阅览
伏玉笋, 唐金辉. 使能未来工厂的5G能力综述[J]. 电信科学, 2022,38(9):18-35.
Yusun FU, Jinhui TANG. A survey on 5G capabilities enabling the factories of the future[J]. Telecommunications science, 2022, 38(9): 18-35.
伏玉笋, 唐金辉. 使能未来工厂的5G能力综述[J]. 电信科学, 2022,38(9):18-35. DOI: 10.11959/j.issn.1000-0801.2022069.
Yusun FU, Jinhui TANG. A survey on 5G capabilities enabling the factories of the future[J]. Telecommunications science, 2022, 38(9): 18-35. DOI: 10.11959/j.issn.1000-0801.2022069.
5G系统将移动通信服务从移动电话、移动宽带和大规模机器通信扩展到新的应用领域,即所谓对通信服务有特殊要求的垂直领域。对使能未来工厂的5G能力进行了全面的分析总结,包括弹性网络架构、灵活频谱、超可靠低时延通信、时间敏感网络、安全和定位,而弹性网络架构又包括对网络切片、非公共网络、5G局域网和边缘计算的支持。希望从广度到深度,对相关的理论及技术应用做透彻、全面的梳理,对其挑战做清晰的总结,从而为相关研究和工程技术人员提供借鉴。
5G systems extend mobile communication services beyond mobile telephony
mobile broadband
and massive machine-type communication into new application domains
so-called vertical domains
with special requirements for communication services.A comprehensive analysis and summary of 5G capabilities enabling the factories of the future were provided
including resilient network architecture
flexible spectrum
ultra reliable and low latency communication
time sensitive network
security and positioning.While resilient network architecture includes network slicing
non-public network
5G LAN
and edge computing.It hopes to have a thorough and comprehensive understanding of the theoretical research and application of 5G
and a clear understanding of its challenges
so as to play a key reference for researchers and engineers in the related fields.
HENNING K . Recommendations for implementing the strategic initiative INDUSTRIE 4.0 [R ] . 2013 .
WOLLSCHLAEGER M , SAUTER T , JASPERNEITE J . The future of industrial communication:automation networks in the era of the Internet of Things and industry 4.0 [J ] . IEEE Industrial Electronics Magazine , 2017 , 11 ( 1 ): 17 - 27 .
RAO S K , PRASAD R . Impact of 5G technologies on industry 4.0 [J ] . Wireless Personal Communications , 2018 , 100 ( 1 ): 145 - 159 .
边缘计算产业联盟 , 工业互联网产业联盟 , 网络5.0产业和技术创新联盟 . 5G时代工业互联网边缘计算网络白皮书 [R ] . 2020 .
ECC , AII AIA , N5A . White paper on industrial Internet and edge computing network in 5G era [R ] . 2020 .
IEC 61158 . Industrial communication networks-fieldbus specification [S ] . 2014 .
IEC 61784 . Industrial communication networks - profiles [S ] . 2014 .
施耐德电气 , 华为技术有限公司 . 5G 和 5G 演进:工业控制应用场景白皮书 [R ] . 2021 .
Schneider Electric , Huawei Technologies Co.,Ltd . 5G and 5G evolution:white paper on industrial control application scena-rios [R ] . 2021 .
5G ACIA . 5G for Connected industries and automation [R ] . 2018 .
张泉灵 , 洪艳萍 . 智能工厂综述 [J ] . 自动化仪表 , 2018 , 39 ( 8 ): 1 - 5 .
ZHANG Q L , HONG Y P . Intelligent plant review [J ] . Process Automation Instrumentation , 2018 , 39 ( 8 ): 1 - 5 .
Ericsson . Critical capabilities for private 5G networks [R ] . 2019 .
工业互联网产业联盟 . 工业互联网体系架构 [R ] . 2020 .
Alliance of Industrial Internet . Industrial internet architecture [R ] . 2020 .
3GPP . Service requirements for cyber-physical control applications in vertical domains:TS 22.104 [S ] . 2020 .
3GPP . Study on communication for automation in vertical domains:TR 22.804 [S ] . 2020 .
BANCHS A , GUTIERREZ-ESTEVEZ D M ,, FUENTES M , et al . A 5G mobile network architecture to support vertical industries [J ] . IEEE Communications Magazine , 2019 , 57 ( 12 ): 38 - 44 .
5G PPP . 5G and the factories of the future [R ] . 2015 .
GHOSH A , MAEDER A , BAKER M , et al . 5G evolution:a view on 5G cellular technology beyond 3GPP release 15 [J ] . IEEE Access , 2019 ( 7 ): 127639 - 127651 .
确定性网络产业联盟 . 5G确定性网络+工业互联网融合白皮书 [R ] . 2020 .
5G DNA . 5G deterministic network and industrial Internet convergence white paper [R ] . 2020 .
3GPP . Service requirements for the 5G system:TS 22.261 [S ] . 2020 .
GANGAKHEDKAR S , CAO H W , ALI A R , et al . Use cases,requirements and challenges of 5G communication for industrial automation [C ] // Proceedings of 2018 IEEE International Conference on Communications Workshops . Piscataway:IEEE Press , 2018 : 1 - 6 .
3GPP . System architecture for the 5G system:TS 23.501 [S ] . 2020 .
Samsung . 5G core vision [R ] . 2019 .
3GPP . Study on enhancement of 5G system (5GS) for vertical and local area network (LAN) services:TR 23.734 [S ] . 2019 .
5G-MoNArch . 5G architecture and slicing for customized networks [R ] . 2019 .
WIJETHILAKA S , LIYANAGE M . Survey on network slicing for internet of things realization in 5G networks [J ] . IEEE Communications Surveys & Tutorials , 2021 , 23 ( 2 ): 957 - 994 .
ZHANG S L . An overview of network slicing for 5G [J ] . IEEE Wireless Communications , 2019 , 26 ( 3 ): 111 - 117 .
AFOLABI I , TALEB T , SAMDANIS K , et al . Network slicing and softwarization:a survey onprinciples,enabling technologies and solutions [J ] . IEEE Communications Surveys & Tutorials , 2018 , 20 ( 3 ): 2429 - 2453 .
LUONG N C , WANG P , NIYATO D , et al . Resource man-agement in cloud networking usingeconomic analysis and pric-ing models:a survey [J ] . IEEE Communications Surveys & Tu-torials , 2017 , 19 ( 2 ): 954 - 1001 .
ZHANG Y , LEE C , NIYATO D , et al . Auction approaches for resource allocation inwireless systems:a survey [J ] . IEEE Communications Surveys & Tutorials , 2013 , 15 ( 3 ): 1020 - 1041 .
SU R Y , ZHANG D Y , VENKATESAN R , et al . Resource allocation for network slicing in 5G telecommunication networks:a survey of principles and models [J ] . IEEE Network , 2019 , 33 ( 6 ): 172 - 179 .
CABALLERO P , BANCHS A , DE VECIANA G , et al . Network slicing games:enabling customization in multi-tenant networks [J ] . IEEE INFOCOM 2017 - IEEE Conference on Computer Communications , 2017 : 1 - 9 .
LIANG L , WU Y F , FENG G , et al . Online auction-based resource allocation for service-oriented network slicing [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 8 ): 8063 - 8074 .
伏玉笋 . 移动通信网络评价准则与解决方案 [J ] . 电信科学 , 2020 , 36 ( 11 ): 28 - 38 .
FU Y S . Evaluation criteria and solution of mobile communica-tion network [J ] . Telecommunications Science , 2020 , 36 ( 11 ): 28 - 38 .
SATTAR D , MATRAWY A . Optimal slice allocation in 5G core networks [J ] . IEEE Networking Letters , 2019 , 1 ( 2 ): 48 - 51 .
TALEB T , AFOLABI I , BAGAA M . Orchestrating 5G network slices to support industrial internet and to shape next-generation smart factories [J ] . IEEE Network , 2019 , 33 ( 4 ): 146 - 154 .
ORDONEZ-LUCENA J , CHAVARRIA J F , CONTRERAS L M , et al . The use of 5G Non-Public Networks to support Industry 4.0 scenarios [C ] // Proceedings of 2019 IEEE Conference on Standards for Communications and Networking . Piscataway:IEEE Press , 2019 : 1 - 7 .
STRINATI E C , HAUSTEIN T , MAMAN M , et al . Beyond 5G private networks:the 5G CONNI perspective [C ] // Proceedings of 2020 IEEE Globecom Workshops (GC Wkshps . Piscataway:IEEE Press , 2020 : 1 - 6 .
5G ACIA . 5G non-public networks for industrial scenarios [R ] . 2019 .
ROSTAMI A , . Private 5G networks for vertical industries:deployment and operation models [C ] // Proceedings of 2019 IEEE 2nd 5G World Forum (5GWF) . Piscataway:IEEE Press , 2019 : 433 - 439 .
欧阳晔 , 王立磊 , 杨爱东 , 等 . 通信人工智能的下一个十年 [J ] . 电信科学 , 2021 37 ( 3 ): 1 - 36 .
OUYANG Y , WANG L L , YANG A D , et al . Next decade of telecommunications artificial intelligence [J ] . Telecommunica-tions Science , 2021 37 ( 3 ): 1 - 36 .
3GPP . Feasibility study on LAN support in 5G:TR 22.821 [S ] . 2018 .
ETSI . Mobile-edge computing (MEC); Service scenarios [R ] . 2015 .
ETSI . MEC in 5G networks [R ] . 2018 .
3GPP . Architecture for enabling edge applications:TS 23.558 [S ] . 2020 .
CHOI Y , PARK N . Support for edge computing in the 5G network [C ] // Proceedings of 2018Tenth International Conference on Ubiquitous and Future Networks (ICUFN) . Piscataway:IEEE Press , 2018 : 592 - 596 .
SPINELLI F , MANCUSO V . Toward enabled industrial verticals in 5G:a survey on MEC-based approaches to provisioning and flexibility [J ] . IEEE Communications Surveys & Tutorials , 2021 , 23 ( 1 ): 596 - 630 .
CHEN B T , WAN J F , CELESTI A , et al . Edge computing in IoT-based manufacturing [J ] . IEEE Communications Magazine , 2018 , 56 ( 9 ): 103 - 109 .
LIU Y Q , PENG M G , SHOU G C , et al . Toward edge intelligence:multiaccess edge computing for 5G and internet of things [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 8 ): 6722 - 6747 .
YEO J , KIM T , OH J , et al . Advanced data transmission framework for 5G wireless communications in the 3GPP new radio standard [J ] . IEEE Communications Standards Magazine , 2019 , 3 ( 3 ): 38 - 43 .
3GPP . On bandwidth parts and “RF” requirements:R1-1711795 [S ] . 2017 .
JEON J . NR wide bandwidth operations [J ] . IEEE Communications Magazine , 2018 , 56 ( 3 ): 42 - 46 .
ABINADER F , MARCANO A , SCHOBER K , et al . Impact of bandwidth part (BWP) switching on 5G NR system performance [C ] // Proceedings of 2019IEEE 2nd 5G World Forum (5GWF) . Piscataway:IEEE Press , 2019 : 161 - 166 .
伏玉笋 , 杨根科 . 无线超可靠低时延通信:关键设计分析与挑战 [J ] . 通信学报 , 2020 , 41 ( 8 ): 187 - 203 .
FU Y S , YANG G K . Wireless ultra-reliable and low-latency communication:key design analysis and challenge [J ] . Journal on Communications , 2020 , 41 ( 8 ): 187 - 203 .
Nokia Bell Labs . Ultra reliable low latency communication for 5G new radio [R ] . 2018 .
Nokia Bell Labs . Wireless for verticals [R ] . 2017 .
SCHULZ P , MATTHE M , KLESSIG H , et al . Latency critical IoT applications in 5G:perspective on the design of radio interface and network architecture [J ] . IEEE Communications Magazine , 2017 , 55 ( 2 ): 70 - 78 .
POPOVSKI P , STEFANOVIC C , NIELSEN J J , et al . Wireless accessin ultra-reliable low-latency communication (URLLC) [J ] . IEEE Transactions on Communications , 2019 , 67 ( 8 ): 5783 - 5801 .
Ericsson . 5G Techniques for ultra reliable low latency communication [R ] . 2017 .
3GPP . Feasibility Study on new services and markets technology enablers for critical communications:TR 22.862 [S ] . 2016 .
3GPP . Study on physical layer enhancements for NR ultra-reliable and low latency case (URLLC):TR38.824 [S ] . 2019 .
3GPP . Study on NR industrial internet of things (IoT):TR38.825 [S ] . 2019 .
3GPP . Study on enhancement of ultra-reliable low-latency communication (URLLC) support in the 5G core network (5GC):TR 23.725 [S ] . 2019 .
DURISI G , KOCH T , POPOVSKI P . Toward massive,ultrareliable,and low-latency wireless communication with short packets [J ] . Proceedings of the IEEE , 2016 , 104 ( 9 ): 1711 - 1726 .
KIM K S , KIM D K , CHAE C B , et al . Ultrareliable and low-latency communication techniques for tactile internet services [J ] . Proceedings of the IEEE , 2019 , 107 ( 2 ): 376 - 393 .
3GPP . On URLLC design principles:R1-167061 [S ] . 2016 .
RAO J , VRZIC S . Packet duplication for URLLC in 5G dual connectivity architecture [C ] // Proceedings of 2018 IEEE Wire-less Communications and Networking Conference . Piscataway:IEEE Press , 2018 : 1 - 6 .
3GPP . Multi-connectivity:TR 37.340 [S ] . 2019 .
AIJAZ A . Packet duplication in dual connectivity enabled 5G wireless networks:overview and challenges [J ] . IEEE Communications Standards Magazine . 2019 , 3 ( 3 ): 20 - 28 .
RAO J , VRZIC S . Packet duplication for URLLC in 5G:architectural enhancements and performance analysis [J ] . IEEE Network , 2018 , 32 ( 2 ): 32 - 40 .
KHOSHNEVISAN M , JOSEPH V , GUPTA P , et al . 5G Industrial networks with CoMP for URLLC and time sensitive network architecture [J ] . IEEE Journal on Selected Areas in Communications , 2019 , 37 ( 4 ): 947 - 959 .
NIELSEN J J , LIU R , POPOVSKI P . Ultra-reliable low latency communication using interface diversity [J ] . IEEE Transactions on Communications , 2018 , 66 ( 3 ): 1322 - 1334 .
Ericsson . IEEE 802.1 TSN -an introduction [R ] . 2019 .
MESSENGER J L . Time-sensitive networking:an introduction [J ] . IEEE Communications Standards Magazine , 2018 , 2 ( 2 ): 29 - 33 .
Ericsson . 5G-TSN integration for industrial automation [R ] . Ericsson Technology Review . 2019 .
蔡岳平 , 姚宗辰 , 李天驰 . 时间敏感网络标准与研究综述 [J ] . 计算机学报 , 2021 , 44 ( 7 ): 1378 - 1397 .
CAI Y P , YAO Z C , LI T C . A survey on time-sensitive net-working:standards and state-of-the-art [J ] . Chinese Journal of Computers , 2021 , 44 ( 7 ): 1378 - 1397 .
邱雪松 , 黄徐川 , 李文萃 , 等 . 面向大规模时间敏感网络的分组调度机制 [J ] . 通信学报 , 2020 , 41 ( 11 ): 124 - 131 .
QIU X S , HUANG X C , LI W C , et al . Group-scheduling me-chanism for large-scaletime-sensitive network [J ] . Journal on Communications , 2020 , 41 ( 11 ): 124 - 131 .
李红艳 , 张焘 , 张靖乾 , 等 . 基于时变图的天地一体化网络时间确定性路由算法与协议 [J ] . 通信学报 , 2020 , 41 ( 10 ): 116 - 129 .
LI H Y , ZHANG T , ZHANG J Q , et al . Time deterministic routing algorithm and protocol based ontime-varying graph over the space-ground integrated network [J ] . Journal on Communi-cations , 2020 , 41 ( 10 ): 116 - 129 .
胡致远 , 胡文前 , 李香 , 等 . 面向业务可达性的广域工业互联网调度算法研究 [J ] . 电子与信息学报 , 2021 , 43 ( 9 ): 2608 - 2616 .
HU Z Y , HU W Q , LI X , et al . Research on wide area industrial internet scheduling algorithmbased on service reachability [J ] . Journal of Electronics & Information Technology , 2021 , 43 ( 9 ): 2608 - 2616 .
DAI X T , ZHAO S , JIANG Y , et al . Fixed-priority scheduling and controller co-design for time-sensitive networks [C ] // Proceedings of the 39th International Conference on Computer-Aided Design . New York:ACM Press , 2020 : 1 - 9 .
王敬超 , 高先明 , 黄玉栋 , 等 . 时间敏感网络的控制架构 [J ] . 北京邮电大学学报 , 2021 , 44 ( 2 ): 95 - 101 .
WANG J C , GAO X M , HUANG Y D , et al . Research of con-trol framework in time-sensitive network [J ] . Journal of Beijing University of Posts and Telecommunications , 2021 , 44 ( 2 ): 95 - 101 .
BOEHM M , OHMS J , KUMAR M , et al . Time-sensitive software-defined networking:a unified control- plane for TSN and SDN [C ] // Mobile Communication - Technologies and Applications; 24.ITG-Symposium . Piscataway:IEEE Press , 2019 : 1 - 9 .
RUDOLPH H C , KUNZ A , IACONO L L , et al . Security challenges of the 3GPP 5G service based architecture [J ] . IEEE Communications Standards Magazine , 2019 , 3 ( 1 ): 60 - 65 .
5G ACIA . Security aspects of 5G for industrial networks [R ] . 2020 .
3GPP . Security architecture and procedures for 5G system:TS 33.501 [S ] . 2020 .
3GPP . 3GPP System architecture evolution (SAE); Security architecture:TS 33.401 [S ] . 2019 .
3GPP . Authentication and key management for applications (AKMA) based on 3GPP credentials in the 5G System (5GS):TS 33.535 [S ] . 2020 .
3GPP . Study on the security of ultra-reliable low-latency communication (URLLC) for the 5G system (5GS):TR 33.825 [S ] . 2019 .
3GPP . Study on security enhancements of 5G system (5GS) for vertical and local area network (LAN) services:TR 33.819 [S ] . 2019 .
3GPP . Study on security aspects of 5G network slicing management:TR 33.811 [S ] . 2018 .
3GPP . Security aspects of common API framework (CAPIF) for 3GPP northbound APIs:TS 33.122 [S ] . 2019 .
Ericsson . Security standards and their role in 5G [R ] . 2020 .
AHMAD I , SHAHABUDDIN S , KUMAR T , et al . Security for 5G and beyond [J ] . IEEE Communications Surveys & Tutorials , 2019 , 21 ( 4 ): 3682 - 3722 .
CAO J , MA M D , LI H , et al . A survey on security aspects for 3GPP 5G networks [J ] . IEEE Communications Surveys & Tutorials , 2020 , 22 ( 1 ): 170 - 195 .
YOSHIZAWA T , BASKARAN S B M , KUNZ A . Overview of 5G URLLC system and security aspects in 3GPP [C ] // Proceedings of 2019IEEE Conference on Standards for Communications and Networking (CSCN) . Piscataway:IEEE Press , 2019 : 1 - 5 .
Ericsson . A guide to 5G network security 2.0 [R ] . 2021 .
杨志强 , 粟栗 , 齐旻鹏 , 等 . 5G安全技术与标准 [J ] . 电信科学 , 2020 , 36 ( 12 ): 1 - 19 .
YANG Z Q , SU L , QI M P , et al . Overview and prospect of 5G security [J ] . Telecommunications Science , 2020 , 36 ( 12 ): 1 - 19 .
KHAN M , GINZBOORG P , NIEMI V . AKMA:delegated authentication system of 5G [J ] . IEEE Communications Standards Magazine , 2021 , 5 ( 3 ): 56 - 61 .
SETHI M , AURA T.Secure network access authentication for IoT devices:EAP framework vs . individual protocols [J ] . IEEE Communications Standards Magazine , 2021 , 5 ( 3 ): 34 - 39 .
3GPP . Study on positioning use cases:TS 22.872 [S ] . 2018 .
DEL PERAL-ROSADO J A , RAULEFS R , LÓPEZ- SALCEDO J A , , et al . Survey of cellular mobile radio localization methods:from 1G to 5G [J ] . IEEE Communications Surveys &Tutorials , 2018 , 20 ( 2 ): 1124 - 1148 .
LIN X Q , BERGMAN J , GUNNARSSON F , et al . Positioning for the internet of things:a 3GPP perspective [J ] . IEEE Communications Magazine , 2017 , 55 ( 12 ): 179 - 185 .
Ericsson . Positioning with LTE [R ] . 2011 .
3GPP . Study on local NR positioning in NG-RAN:TS 38.856 [S ] . 2019 .
3GPP . Study on NR positioning enhancements:TS 38.857 [S ] . 2020 .
3GPP . Study on location enhancements for mission critical services:TR 23.744 [S ] . 2020 .
3GPP . User Equipment (UE) positioning in NG-RAN:TS 38.305 [S ] . 2019 .
3GPP . Study on NR positioning support:TR 38.855 [S ] . 2019 .
GUO X S , ANSARI N , HU F Z , et al . A survey on fusion-based indoor positioning [J ] . IEEE Communications Surveys & Tutorials , 2019 , 22 ( 1 ): 566 - 594 .
CHALOUPKA Z . Technology and standardization gaps for high accuracy positioning in 5G [J ] . IEEE Communications Standards Magazine , 2017 , 1 ( 1 ): 59 - 65 .
Qualcomm . OTDOA positioning in 3GPP LTE [R ] . 2014 .
ZHANG P , LU J , WANG Y , et al . Cooperative localization in 5G networks:a survey [J ] . ICT Express , 2017 , 3 ( 1 ): 27 - 32 .
中通服中睿科技有限公司 . 5G 垂直行业专网设计及部署白皮书 [R ] . 2021 .
China Comservice Zhongrui Technology Co.,Ltd . 5G vertical indus-try private network design and deployment white paper [R ] . 2021 .
5G应用产业方阵 . 5G行业虚拟专网网络架构白皮书 [R ] . 2020 .
5G AIA . 5G industry virtual private network architecture white paper [R ] . 2020 .
工业互联网产业联盟(AII) . 工业互联网安全框架 [R ] . 2018 .
AII . Industrial internet security framework [R ] . 2018 .
0
浏览量
499
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构