浏览全部资源
扫码关注微信
[ "诸葛斌(1976- ),男,博士,浙江工商大学信息与电子工程学院教授,主要研究方向为网络和通信技术、互联网技术和网络安全" ]
[ "尹正虎(1997- ),男,浙江工商大学信息与电子工程学院硕士生,主要研究方向为在线教育、自然语言处理和个性化推荐" ]
[ "斯文学(1996- ),女,浙江工商大学信息与电子工程学院硕士生,主要研究方向为在线教育、数据分析和个性化推荐" ]
[ "颜蕾(1996- ),女,浙江工商大学信息与电子工程学院硕士生,主要研究方向为教育数据挖掘、深度学习和机器学习" ]
[ "董黎刚(1972- ),男,博士,浙江工商大学信息与电子工程学院教授,IEEE 和IEEE-CS成员,中国电子学会高级会员,浙江计算机学会理事,主要研究方向为智能网络、在线教育" ]
[ "蒋献(1988- ),男,浙江工商大学信息与电子工程学院讲师、实验员,主要研究方向为在线教育" ]
网络出版日期:2022-09,
纸质出版日期:2022-09-20
移动端阅览
诸葛斌, 尹正虎, 斯文学, 等. 基于学生知识追踪的多指标习题推荐算法[J]. 电信科学, 2022,38(9):129-143.
Bin ZHUGE, Zhenghu YIN, Wenxue SI, et al. Student knowledge tracking based multi-indicator exercise recommendation algorithm[J]. Telecommunications science, 2022, 38(9): 129-143.
诸葛斌, 尹正虎, 斯文学, 等. 基于学生知识追踪的多指标习题推荐算法[J]. 电信科学, 2022,38(9):129-143. DOI: 10.11959/j.issn.1000-0801.2022234.
Bin ZHUGE, Zhenghu YIN, Wenxue SI, et al. Student knowledge tracking based multi-indicator exercise recommendation algorithm[J]. Telecommunications science, 2022, 38(9): 129-143. DOI: 10.11959/j.issn.1000-0801.2022234.
个性化习题推荐是教育信息化时代的重要课题,传统的习题推荐算法忽略了学生在学习过程中的遗忘规律,未能充分挖掘学生的知识掌握水平和相似学生的共性特征,推荐习题的评价指标单一,推荐习题的新颖度和多样性不足,不能合理地促进学生对新知识的学习或帮助学生查缺补漏。针对上述缺陷,提出一种基于学生知识追踪的多指标习题推荐方法,该方法分为习题初筛和再过滤两个模块,围绕习题推荐的新颖度、难度以及多样性 3 个指标展开研究,首先构造了一个结合学生遗忘规律的知识概率预测(student forgetting behavior based knowledge concept coverage prediction,SF-KCCP)模型,保证推荐习题的新颖性;接着基于动态键值的知识追踪(dynamic key-value memory networks for knowledge tracing,DKVMN)模型精准挖掘学生的知识概念掌握水平,以保证推荐合适难度的习题;最后将基于用户的协同过滤(user-based collaborative filtering,UserCF)算法融入再过滤模块,利用学生群体之间的相似性实现推荐结果的多样性。通过大量的实验证明,所提方法比一些现有的基线模型取得了更好的性能。
Personalized exercise recommendation was an important topic in the era of education informatization
the forgetting laws of students in the learning process were ignored by the traditional problem recommendation algorithm
which failed to fully tap the students’ knowledge mastery level and the common characteristics of similar students
insufficient
could not reasonably promote students’ learning of new knowledge or help students find and fill omissions.In view of the above defects
a multi-index exercise recommendation method based on student knowledge tracking was proposed
which was divided into two modules: preliminary screening and re-filtering of exercises
focusing on the novelty
difficulty and diversity of exercise recommendation.Firstly
a knowledge probability prediction (SF-KCCP) model combined with students’ forgetting law was constructed to ensure the novelty of the recommended exercises.Then
students’ knowledge and concept mastery level was accurately excavated based on the dynamic key-value knowledge tracking (DKVMN) model to ensure that exercises of appropriate difficulty were recommended.Finally
the user-based collaborative filtering (UserCF) algorithm was integrated into the re-filtering module
and the similarity between student groups was used to achieve the diversity of recommendation results.The proposed method is demonstrated by extensive experiments to achieve better performance than some existing baseline models.
BOBADILLA J , ALONSO S , HERNANDO A . Deep learning architecture for collaborative filtering recommender systems [J ] . Applied Sciences , 2020 , 10 ( 7 ): 2441 .
NGUYEN L V , HONG M S , JUNG J J , et al . Cognitive similarity-based collaborative filtering recommendation system [J ] . Applied Sciences , 2020 , 10 ( 12 ): 4183 .
LI J , YE Z . Course recommendations in online education based on collaborative filtering recommendation algorithm [J ] . Complexity , 2020 :6619249.
吴云峰 , 冯筠 , 孙霞 , 等 . 基于多分类器的迁移Bagging习题推荐 [J ] . 计算机应用 , 2013 , 33 ( 7 ): 1950 - 1954 .
WU Y F , FENG Y , SUN X , et al . Online transfer-Bagging question recommendation based on hybrid classifiers [J ] . Journal of Computer Applications , 2013 , 33 ( 7 ): 1950 - 1954 .
SEGAL A , KATZIR Z , GAL K , et al . Edurank:a collaborative filtering approach to personalization in e-learning [C ] // Proceedings of Conference on Educational Data Mining .[S.l.:s.n. ] , 2014 .
OZAKI K . DINA models for multiple-choice items with few parameters:considering incorrect answers [J ] . Applied Psychological Measurement , 2015 , 39 ( 6 ): 431 - 447 .
WANG F , LIU Q , CHEN E H , et al . Neural cognitive diagnosis for intelligent education systems [J ] . Proceedings of the AAAI Conference on Artificial Intelligence , 2020 , 34 ( 4 ): 6153 - 6161 .
LIU Q , WU R Z , CHEN E H , et al . Fuzzy cognitive diagnosis for modelling examinee performance [J ] . ACM Transactions on Intelligent Systems and Technology , 2018 , 9 ( 4 ): 1 - 26 .
CHENG S , LIU Q , CHEN E H , et al . DIRT:deep learning enhanced item response theory for cognitive diagnosis [C ] // Proceedings of the 28th ACM International Conference on Information and Knowledge Management .[S.l.:s.n. ] , 2019 : 2397 - 2400 .
PIECH C , BASSEN J , HUANG J , et al . Deep knowledge tracing [J ] . Advances in Neural Information Processing Systems , 2015 ( 28 ).
YEUNG C K , YEUNG D Y . Addressing two problems in deep knowledge tracing via prediction-consistent regularization [C ] // Proceedings of the 5th Annual ACM Conference on Learning at Scale . New York:ACM Press , 2018 : 1 - 10 .
ZHANG L , XIONG X L , ZHAO S Y , et al . Incorporating rich features into deep knowledge tracing [C ] // Proceedings of the 4th (2017) ACM Conference on Learning @ Scale . New York:ACM Press , 2017 : 169 - 172 .
LEE Y , CHOI Y , CHO J , et al . Creating a neural pedagogical agent by jointly learning to review and assess [J ] . arXiv preprint arXiv:1906.10910 , 2019 .
ZHANG J , SHI X , KING I , et al . Dynamic key-value memory networks for knowledge tracing [C ] // Proceedings of the 26th International Conference on World Wide Web .[S.l.:s.n. ] , 2017 : 765 - 774 .
ZHOU G R , ZHU X Q , SONG C R , et al . Deep interest network for click-through rate prediction [C ] // Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining . New York:ACM Press , 2018 : 1059 - 1068 .
申情 , 郭文宾 , 楼俊钢 , 等 . 考虑多层次潜在特征的个性化推荐模型 [J ] . 电信科学 , 2022 , 38 ( 2 ): 71 - 83 .
SHEN Q , GUO W B , LOU J G , et al . Personalized recommendation model with multi-level latent features [J ] . Telecommunications Science , 2022 , 38 ( 2 ): 71 - 83 .
LIU G , HAO T . User-based question recommendation for question answering system [J ] . International Journal of Information and Education Technology , 2012 , 2 ( 3 ): 243 .
WEI S , YE N , ZHANG S , et al . Item-based collaborative filtering recommendation algorithm combining item category with interestingness measure [C ] // Proceedings of 2012 International Conference on Computer Science and Service System . Piscataway:IEEE Press , 2012 : 2038 - 2041 .
马骁睿 , 徐圆 , 朱群雄 . 一种结合深度知识追踪的个性化习题推荐方法 [J ] . 小型微型计算机系统 , 2020 , 41 ( 5 ): 990 - 995 .
MA X R , XU Y , ZHU Q X . Personalized exercises recommendation method based on deep knowledge tracing [J ] . Journal of Chinese Computer Systems , 2020 , 41 ( 5 ): 990 - 995 .
LV P , WANG X , XU J , et al . Utilizing knowledge graph and student testing behavior data for personalized exercise recommendation [C ] // Proceedings of ACM Turing Celebration Conference-China . New York:ACM Press , 2018 : 53 - 59 .
PARDOS Z A , HEFFERNAN N T . KT-IDEM:Introducing item difficulty to the knowledge tracing model [C ] // Proceedings of International Conference on User Modeling,Adaptation,and Personalization . Heidelberg:Springer , 2011 : 243 - 254 .
KAMINSKAS M , BRIDGE D . Diversity,serendipity,novelty,and coverage:a survey and empirical analysis of beyond-accuracy objectives in recommender systems [J ] . ACM Transactions on Interactive Intelligent Systems , 2017 , 7 ( 1 ): 2 .
NEDUNGADI P , REMYA M S . Incorporating forgetting in the personalized,clustered,bayesian knowledge tracing (PC-BKT) model [C ] // Proceedings of 2015 International Conference on Cognitive Computing and Information Processing(CCIP) . Piscataway:IEEE Press , 2015 : 1 - 5 .
WANG Z , ZHU J L , LI X , et al . Structured knowledge tracing models for student assessment on coursera [C ] // Proceedings of the 3rd (2016) ACM Conference on Learning @ Scale . New York:ACM Press , 2016 : 209 - 212 .
NAGATANI K , ZHANG Q , SATO M , et al . Augmenting knowledge tracing by considering forgetting behavior [C ] // Proceedings of WWW '19:The World Wide Web Conference .[S.l.:s.n. ] , 2019 : 3101 - 3107 .
HUO Y J , WONG D F , NI L M , et al . Knowledge modeling via contextualized representations for LSTM-based personalized exercise recommendation [J ] . Information Sciences , 2020 ( 523 ): 266 - 278 .
ZHAO J J , BHATT S , THILLE C , et al . Cold start knowledge tracing with attentive neural turing machine [C ] // Proceedings of the Seventh ACM Conference on Learning @ Scale . New York:ACM Press , 2020 : 333 - 336 .
周晶 , 孙喜民 , 于晓昆 , 等 . 知识图谱与数据应用:智能推荐 [J ] . 电信科学 , 2019 , 35 ( 8 ): 165 - 172 .
ZHOU J , SUN X M , YU X K , et al . Knowledge graph and data application:intelligent recommendation [J ] . Telecommunications Science , 2019 , 35 ( 8 ): 165 - 172 .
0
浏览量
500
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构