浏览全部资源
扫码关注微信
[ "陈华华(1975- ),男,博士,杭州电子科技大学副教授,主要研究方向为数字图像处理、计算机视觉和模式识别" ]
[ "陈哲(1995- ),男,杭州电子科技大学硕士生,主要研究方向为异常检测" ]
网络出版日期:2022-12,
纸质出版日期:2022-12-20
移动端阅览
陈华华, 陈哲. 基于钉板分布稀疏变分自编码器的异常检测算法研究[J]. 电信科学, 2022,38(12):65-77.
Huahua CHEN, Zhe CHEN. Research on anomaly detection algorithm based on sparse variational autoencoder using spike and slab prior[J]. Telecommunications science, 2022, 38(12): 65-77.
陈华华, 陈哲. 基于钉板分布稀疏变分自编码器的异常检测算法研究[J]. 电信科学, 2022,38(12):65-77. DOI: 10.11959/j.issn.1000-0801.2022238.
Huahua CHEN, Zhe CHEN. Research on anomaly detection algorithm based on sparse variational autoencoder using spike and slab prior[J]. Telecommunications science, 2022, 38(12): 65-77. DOI: 10.11959/j.issn.1000-0801.2022238.
异常检测由于其广泛的应用一直是数据挖掘中一个重要的研究分支,它有助于研究人员获得重要的信息进而对数据做出更好的决策。提出了一种基于钉板分布稀疏变分自编码器的异常检测模型。首先,使用离散-连续混合模型钉板分布作为变分自编码器的先验,模拟隐变量所在空间的稀疏性,得到数据特征的稀疏表示;其次,以所提出的自编码器构建深度支持向量网络,对特征空间进行压缩,并采用最优超球体区分正常数据和异常数据;再次,以数据特征和超球体中心之间的欧氏距离完成异常检测;最后,在基准数据集MNIST (modifiednational institute of standards and technology database)和Fashion-MNIST上的实验评估表明,与现存的异常检测算法相比,本文所提出的算法具有更好的检测效果。
Anomaly detection remains to be an essential and extensive research branch in data mining due to its widespread use in a wide range of applications.It helps researchers to obtain vital information and make better decisions about data by detecting abnormal data.Considering that sparse coding can get more powerful features and improve the performance of other tasks
an anomaly detection model based on sparse variational autoencoder was proposed.Firstly
the discrete mixed modelspike and slab distribution was used as the prior of variational autoencoder
simulated the sparsity of the space where the hidden variables were located
and obtained the sparse representation of data characteristics.Secondly
combined with the deep support vector network
the feature space was compressed
and the optimal hypersphere was found to discriminate normal data and abnormal data.And then
the abnormal fraction of the data was measured by the Euclidean distance from the data feature to the center of the hypersphere
and then the abnormal detection was carried out.Finally
the algorithm was evaluated on the benchmark datasets MNIST and Fashion-MNIST
and the experimental results show that the proposed algorithm achieves better effects than the state-of-the-art methods.
HAWKINS D M . Identification of outliers [M ] . London : Chapman and Hall , 1980 .
SHENH D , KURSUN E . Label augmentation via time-based knowledge distillation for financial anomaly detection [EB ] . 2021 .
TUFAN E , TEZCAN C , ACARTÜRK C , . Anomaly-based intrusion detection by machine learning:acase study on probing attacks to an institutional network [J ] . IEEE Access , 9 : 50078 - 50092 .
TSCHUCHNIGM E , GADERMAYR M . Anomaly detection in medical imaging:amini review [EB ] . 2021 .
CUI Y J , LIU Z X , LIAN S G , et al . A survey on unsupervised industrial anomaly detection algorithms [EB ] . 2022 .
PATRIKARD R , PARATE M . Anomaly detection using edge computing in video surveillance system:review [J ] . International Journal of Multimedia Information Retrieval , 2021 , 11 : 85 - 110 .
BOGDOLL D , NITSCHE M , ZÖLLNERJ M , . Anomaly detection in autonomous driving:asurvey [EB ] . 2022 .
JÖRG SANDER . LOF:identifying density-based local outliers [J ] . Acm Sigmod Record , 2000 , 29 ( 2 ): 93 - 104 .
LIU F T , TING K M , ZHOU Z H . Isolation forest [C ] // Proceedings of 2008 Eighth IEEE International Conference on Data Mining . Piscataway:IEEE Press , 2008 : 413 - 422 .
ERFANI S M , RAJASEGARAR S , KARUNASEKERA S , et al . High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning [J ] . Pattern Recognition , 2016 , 58 : 121 - 134 .
LI X Y , KIRINGA I , YEAP T , et al . Exploring deep anomaly detection methods based on capsule net [C ] // Advances in Artificial Intelligence . Switzerland:Springer , 2020 : 375 - 387 .
ZIMMERER D , KOHL S A A , PETERSEN J , et al . Context-encoding variational autoencoder for unsupervised anomaly detection [EB ] . 2018 .
SINGH I , HEMACHANDRA N . Anomaly detection using capsule networks for high-dimensional datasets [EB ] . 2021 .
TONOLINI F , JENSEN B S , MURRAY S R . Variational sparse coding [EB ] . 2019 .
SCHLEGL T , SEEBÖCK P , WALDSTEIN S M , et al . Unsupervised anomaly detection with generative adversarial networks to guide marker discovery [C ] // Information Processing in Medical Imaging . Switzerland:Springer , 2017 : 146 - 157 .
ŠKVÁRA V , PEVNÝ T , ŠMÍDL V , . Are generative deep models for novelty detection truly better? [EB ] . 2018 .
SHEIKH A S , SHELTON J A , LÜCKE J , . A truncated EM approach for spike-and-slab sparse coding [J ] . Journal of Machine Learning Research , 2012 , 15 : 2653 - 2687 .
COURVILLE A , BERGSTRA J , BENGIO Y , et al . Unsupervised models of images by spike-and-slab RBMs [EB ] . 2011 .
KINGMA D P , WELLING M . Auto-encoding variational Bayes [EB ] . 2013 .
TAX D M J , DUIN R P W . Support vector data description [J ] . Machine Learning , 2004 , 54 ( 1 ): 45 - 66 .
VAN DER MAATEN L . Learning a parametric embedding by preserving local structure [J ] . Journal of Machine Learning Research , 2009 , 5 : 384 - 391 .
LECUN Y , BOTTOU L , BENGIO Y , et al . Gradient-based learning applied to document recognition [J ] . Proceedings of the IEEE , 1998 , 86 ( 11 ): 2278 - 2324 .
XIAO H , RASUL K , VOLLGRAF R , et al . Fashion-MNIST:a novel image dataset for benchmarking machine learning algorithms [EB ] . 2017 .
MANEVITZ L M , YOUSEF M . One-class SVMs for document classification [J ] . Journal of Machine Learning Research , 2001 , 2 ( 12 ): 139 - 154 .
MAKHZANI A , FREY B J . Winner-take-all autoencoders [C ] // Proceedings of Advances in Neural Information Processing Systems(NIPS).Montreal:Neural Information Processing Systems Foundation,Inc . 2015 : 2791 - 2799 .
PIDHORSKYI S , ALMOHSEN R , ADJEROH D A , et al . Generative probabilistic novelty detection with adversarial autoencoders [C ] // Proceedings of Advances in Neural Information Processing Systems(NIPS).Montreal:Neural Information Processing Systems Foundation,Inc . 2018 : 6822 - 6833 .
SABOKROU M , KHALOOEI M , FATHY M , et al . Adversarially learned one-class classifier for novelty detection [C ] // Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2018 : 3379 - 3388 .
SAKURADA M , YAIRI T . Anomaly detection using autoencoders with nonlinear dimensionality reduction [C ] // MLSDA'14:Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis . 2014 : 4 - 11 .
PERERA P , NALLAPATI R , XIANG B . OCGAN:one-class novelty detection using GANs with constrained latent representations [C ] // Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2019 : 2893 - 2901 .
KWON G , PRABHUSHANKAR M , TEMEL D , et al . Back-propagated gradient representations for anomaly detection [C ] // Proceedings of the European Conference on Computer Vision (ECCV) . Heidelberg:Springer , 2020 : 206 - 226 .
0
浏览量
384
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构