浏览全部资源
扫码关注微信
[ "陈仲华(1977- ),男,中国电信股份有限公司研究院高级工程师,主要研究方向为6G通感算融合、未来网络、云网融合、SDN/NFV技术" ]
[ "金凌(1986- ),女,中国电信股份有限公司研究院高级工程师,主要研究方向为未来网络架构、6G通感融合仿真技术" ]
[ "孙剑平(1978- ),男,中国电信股份有限公司研究院高级工程师,主要研究方向为6G通感算融合、固移融合承载技术、云网融合" ]
网络出版日期:2022-09,
纸质出版日期:2022-09-20
移动端阅览
陈仲华, 金凌, 孙剑平. 6G通信感知融合指标仿真方法研究[J]. 电信科学, 2022,38(9):77-82.
Zhonghua CHEN, Ling JIN, Jianping SUN. KPI simulation method of harmonized communication and sensing in 6G[J]. Telecommunications science, 2022, 38(9): 77-82.
陈仲华, 金凌, 孙剑平. 6G通信感知融合指标仿真方法研究[J]. 电信科学, 2022,38(9):77-82. DOI: 10.11959/j.issn.1000-0801.2022257.
Zhonghua CHEN, Ling JIN, Jianping SUN. KPI simulation method of harmonized communication and sensing in 6G[J]. Telecommunications science, 2022, 38(9): 77-82. DOI: 10.11959/j.issn.1000-0801.2022257.
如何针对不同的应用合理提供通信感知融合的性能,已经成为5G网络演进和新的6G网络技术的重要研究方向之一。通过对通感融合模式和关键绩效指标(key performance indicator,KPI)的分析,提出了两种不同的通感融合实现的模式,并针对不同模式提出了通感融合仿真系统的架构,描述了仿真系统架构实现的组成模块,以及各部分的实现技术。同时,结合通信频谱效率和感知分辨率等典型的通感融合关键指标,在一定条件下实现了关联仿真,并对仿真结果进行了分析,给出了仿真系统实现的案例。
How to reasonably provide harmonized communication and sensing for different applications has become one of the important research directions of 5G network evolution and 6G technology.Based on the analysis of different scenarios and key performance indicators (KPIs)
an architecture and brief realization including the implementation of each module of the harmonized communication and sensing simulation system was put forward.Furthermore
a correlation simulation case about communication spectrum efficiency and sensing range resolution was given to show how typical indicators work during the simulation under certain conditions.
ZHOU Y , LIU L , WANG L , et al . Service-aware 6G:an intelligent and open network based on the convergence of communication,computing and caching [J ] . Digital Communications and Networks , 2020 , 6 ( 3 ): 253 - 260 .
GIORDANI M , POLESE M , MEZZAVILLA M , et al . Toward 6G networks:use cases and technologies [J ] . IEEE Communications Magazine , 2020 , 58 ( 3 ): 55 - 61 .
CALVANESE STRINATI E , BARBAROSSA S , GONZALEZ-JIMENEZ J L , , et al . 6G:the next frontier:from holographic messaging to artificial intelligence using subterahertz and visible light communication [J ] . IEEE Vehicular Technology Magazine , 2019 , 14 ( 3 ): 42 - 50 .
丁鹭飞 , 耿富禄 , 陈建春 . 雷达原理 [M ] . 西安 : 西安电子科技大学出版社 , 2020 .
DING L F , GENG F L , CHEN J C . Radar principle [M ] . Xi’an : Xidian University Press , 2002 .
3GPP . Study on scenarios and requirements for next generation access technologies:TR 38.913 [S ] . 2022 .
ITU-R . Guidelines for evaluation of radio interface technologies for IMT-2020:M.2412-0 [S ] . 2017 .
ITU-R . Minimum requirements related to technical performance for IMT-2020 radio interface(s):M.2410-0 [S ] . 2017 .
CHEN H Y , AHMAD F , VOROBYOV S , et al . Tensor decompositions in wireless communications and MIMO radar [J ] . IEEE Journal of Selected Topics in Signal Processing , 2021 , 15 ( 3 ): 438 - 453 .
XU C C , BRUNO C , SHIWA C , et al . Rate-splitting multiple access for multi-antenna joint radar and communications [J ] . IEEE Journal of Selected Topics in Signal Processing , 2021 , 15 ( 6 ): 1332 - 1347 .
YONG S C , JAEKWON K , WON Y Y , et al . MIMO-OFDM wireless communications with MATLAB [M ] . Piscataway : IEEE Press , 2010 .
3GPP . NR; physical channels and modulation:TR 38.211 [S ] . 2021 .
3GPP . Study on channel model for frequencies from 0.5 to 100 GHz:TR 38.901 [S ] . 2019 .
ZHOU Y Q , TIAN L , LIU L , et al . Fog computing enabled future mobile communication networks:a convergence of communication and computing [J ] . IEEE Communications Magazine , 2019 , 57 ( 5 ): 20 - 27 .
0
浏览量
331
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构