浏览全部资源
扫码关注微信
1. 北京大学电子学院,北京 100871
2. 鹏程实验室,广东 深圳 518055
[ "胡馨元(2000- ),女,北京大学电子学院博士生,主要研究方向为可重构全息超表面" ]
[ "邓若琪(1997- ),女,北京大学电子学院博士生,主要研究方向为可重构全息超表面及卫星网络等" ]
[ "邸博雅(1992- ),女,博士,北京大学电子学院助理教授,主要研究方向为无线通信、边缘计算、车载网络、智能反射面和非正交多址接入等" ]
[ "张泓亮(1992- ),男,博士,北京大学电子学院助理教授,主要研究方向为可重构智能表面、空中接入网络、优化理论和博弈论等" ]
[ "宋令阳(1979- ),男,博士,北京大学电子学院教授,主要研究方向为无线通信和网络、MIMO、OFDMA 以及信号处理和机器学习等" ]
网络出版日期:2022-10,
纸质出版日期:2022-10-20
移动端阅览
胡馨元, 邓若琪, 邸博雅, 等. 可重构全息超表面辅助卫星通信关键技术[J]. 电信科学, 2022,38(10):46-56.
Xinyuan HU, Ruoqi DENG, Boya DI, et al. Key technologies of satellite communications aided by reconfigurable holographic surfaces[J]. Telecommunications science, 2022, 38(10): 46-56.
胡馨元, 邓若琪, 邸博雅, 等. 可重构全息超表面辅助卫星通信关键技术[J]. 电信科学, 2022,38(10):46-56. DOI: 10.11959/j.issn.1000-0801.2022273.
Xinyuan HU, Ruoqi DENG, Boya DI, et al. Key technologies of satellite communications aided by reconfigurable holographic surfaces[J]. Telecommunications science, 2022, 38(10): 46-56. DOI: 10.11959/j.issn.1000-0801.2022273.
超密集低地球轨道卫星通信网络能弥补传统地面网络频谱资源稀缺、覆盖范围有限的不足,有潜力提供全球大规模接入的高速率服务。由于卫星的高速移动性,卫星通信对天线性能,如波束控制能力和天线增益等,也提出了更为严苛的要求。因此,对一种新型的超材料天线——可重构全息超表面(reconfigurable holographic surface,RHS)辅助卫星通信展开了研究。RHS采用全息原理对超材料单元进行电控,从而实现波束成形。基于 RHS 的硬件结构和全息工作原理,提出了一种 RHS 辅助多卫星通信方案,该方案同时考虑卫星跟踪和数据传输。同时,设计了全息波束成形优化算法以最大化和速率。仿真结果验证了所提方案的有效性并表明了相较于传统相控阵天线,RHS提供了一种成本效益更高的卫星通信支持方式。
Ultra-dense low earth orbit (LEO) satellite communication networks can overcome the scarcity of spectrum resources and the limited coverage of traditional terrestrial networks
and thus have the potential to provide high data rate services and global massive connectivity for terrestrial users.However
due to the high mobility of the satellites
LEO satellite networks put more stringent requirements on antenna technologies in terms of accurate beam steering and high antenna gain.Reconfigurable holographic surface (RHS)
as a new type of metamaterial antenna
is investigated to assist LEO satellite communications.The RHS can electronically control the metamaterial units by leveraging the holographic principle to generate desired directional beams.Based on the hardware structure and holographic working principle of RHS
an RHS-assisted multi-satellite communication scheme was proposed
which considered both the LEO satellite tracking scheme and the data transmission scheme.A holographic beamforming optimization algorithm was also designed to maximize the sum rate.Simulation results verify the effectiveness of the proposed scheme and demonstrat that the RHS provids a more cost-effective way to support satellite communications than the conventional phased array antennas.
ANDREWS J G , BUZZI S , CHOI W , et al . What will 5G be? [J ] . IEEE Journal on Selected Areas in Communications , 2014 , 32 ( 6 ): 1065 - 1082 .
DI B Y , SONG L Y , LI Y H , et al . Ultra-dense LEO:integration of satellite access networks into 5G and beyond [J ] . IEEE Wireless Communications , 2019 , 26 ( 2 ): 62 - 69 .
DENG R Q , DI B Y , ZHANG H L , et al . Ultra-dense LEO satellite constellations:how many LEO satellites do we need? [J ] . IEEE Transactions on Wireless Communications , 2021 , 20 ( 8 ): 4843 - 4857 .
PIZZO A , MARZETTA T L , SANGUINETTI L . Spatially-stationary model for holographic MIMO small-scale fading [J ] . IEEE Journal on Selected Areas in Communications , 2020 , 38 ( 9 ): 1964 - 1979 .
WAN Z W , GAO Z , GAO F F , et al . Terahertz massive MIMO with holographic reconfigurable intelligent surfaces [J ] . IEEE Transactions on Communications , 2021 , 69 ( 7 ): 4732 - 4750 .
BADAWE M E , ALMONEEF T S , RAMAHI O M . A true metasurface antenna [J ] . Scientific Reports , 2016 ,6:19268.
HWANG R B . Binary meta-hologram for a reconfigurable holographic metamaterial antenna [J ] . Scientific Reports , 2020 ,10:8586.
DENG R Q , DI B Y , ZHANG H L , et al . Reconfigurable holographic surface:holographic beamforming for metasurface-aided wireless communications [J ] . IEEE Transactions on Vehicular Technology , 2021 , 70 ( 6 ): 6255 - 6259 .
SLEASMAN T , IMANI M F , XU W R , et al . Waveguide-fed tunable metamaterial element for dynamic apertures [J ] . IEEE Antennas and Wireless Propagation Letters , 2016 , 15 : 606 - 609 .
JOHNSON M C , BRUNTON S L , KUNDTZ N B , et al . Extremum-seeking control of the beam pattern of a reconfigurable holographic metamaterial antenna [J ] . Journal of the Optical Society of America A,Optics,Image Science,and Vision , 2016 , 33 ( 1 ): 59 - 68 .
Pivotal Commware . Holographic beamforming and phased arrays [EB ] . 2019 .
DENG R Q , DI B Y , ZHANG H L , et al . Holographic MIMO for LEO satellite communications aided by reconfigurable holographic surfaces [J ] . IEEE Journal on Selected Areas in Communications , 2022 , 40 ( 10 ): 3071 - 3085 .
DENG R Q , DI B Y , ZHANG H L , et al . Reconfigurable holographic surfaces for future wireless communications [J ] . IEEE Wireless Communications , 2021 , 28 ( 6 ): 126 - 131 .
DI B Y , ZHANG H L , SONG L Y , et al . Hybrid beamforming for reconfigurable intelligent surface based multi-user communications:achievable rates with limited discrete phase shifts [J ] . IEEE Journal on Selected Areas in Communications , 2020 , 38 ( 8 ): 1809 - 1822 .
ZHANG H B , ZHANG H L , DI B Y , et al . Holographic integrated sensing and communication [J ] . IEEE Journal on Selected Areas in Communications , 2022 , 40 ( 7 ): 2114 - 2130 .
HU X Y , DENG R Q , DI B Y , et al . Holographic beamforming for ultra massive MIMO with limited radiation amplitudes:how many quantized bits do we need? [J ] . IEEE Communications Letters , 2022 , 26 ( 6 ): 1403 - 1407 .
DENG R Q , DI B Y , ZHANG H L , et al . Reconfigurable holographic surface-enabled multi-user wireless communications:amplitude-controlled holographic beamforming [J ] . IEEE Transactions on Wireless Communications , 2022 , 21 ( 8 ): 6003 - 6017 .
DENG R Q , DI B Y , ZHANG H L , et al . HDMA:holographic-pattern division multiple access [J ] . IEEE Journal on Selected Areas in Communications , 2022 , 40 ( 4 ): 1317 - 1332 .
SIDIBEH K , VLADIMIROVA T . Wireless communication in LEO satellite formations [C ] //Proceedings of 2008 NASA/ESA Conference on Adapti ve Hardware and Systems.Piscataway:IEEE Press,:255-262. Proceedings of 2008 NASA/ESA Conference on Adaptive Hardware and Systems . Piscataway:IEEE Press ,: 255 - 262 .
GAO X Y , DAI L L , ZHANG Y , et al . Fast channel tracking for terahertz beamspace massive MIMO systems [J ] . IEEE Transactions on Vehicular Technology , 2017 , 66 ( 7 ): 5689 - 5696 .
SHEN K M , YU W . Load and interference aware joint cell association and user scheduling in uplink cellular networks [C ] // Proceedings of 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications . Piscataway:IEEE Press , 2016 : 1 - 5 .
3GPP . 3rd generation partnership project; study on channel model for frequencies from 0.5 to 100 GHz (release 16):TR 38.901 V16.1.0 [S ] . 2020 .
ZHELUDEV N I . Applied physics.The road ahead for metamaterials [J ] . Science , 2010 , 328 ( 5978 ): 582 - 583 .
ZHELUDEV N I , KIVSHAR Y S . From metamaterials to metadevices [J ] . Nature Materials , 2012 , 11 ( 11 ): 917 - 924 .
SOHRABI F , YU W . Hybrid digital and analog beamforming design for large-scale antenna arrays [J ] . IEEE Journal of Selected Topics in Signal Processing , 2016 , 10 ( 3 ): 501 - 513 .
DI B Y . Reconfigurable holographic metasurface aided wideband OFDM communications against beam squint [J ] . IEEE Transactions on Vehicular Technology , 2021 , 70 ( 5 ): 5099 - 5103 .
0
浏览量
526
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构