浏览全部资源
扫码关注微信
1. 嘉兴职业技术学院,浙江 嘉兴 314036
2. 嘉兴市工业互联网安全重点实验室,浙江 嘉兴 314036
3. 嘉兴南洋职业技术学院,浙江 嘉兴 314031
4. 浙江大学,浙江 杭州 310058
5. 中国电信股份有限公司嘉兴分公司,浙江 嘉兴 314011
[ "马焜(1988- ),男,博士,嘉兴职业技术学院讲师,主要研究方向为云计算、雾计算、边缘计算及数据可视化等" ]
[ "徐玲玉(1991- ),女,嘉兴南洋职业技术学院助教,主要研究方向为区块链技术和网络虚拟化技术" ]
[ "沈晓萍(1982- ),女,嘉兴职业技术学院讲师,主要研究方向为网络通信、5G技术" ]
[ "龚志城(1990- ),男,嘉兴职业技术学院讲师,主要研究方向为网络信息安全" ]
[ "蓝建平(1975- ),男,嘉兴职业技术学院副教授,主要研究方向为大数据、移动应用开发" ]
[ "陈双喜(1980- ),男,浙江大学博士生,嘉兴职业技术学院副教授,主要研究方向为网络空间安全拟态防御" ]
[ "钱钧(1977- ),男,中国电信股份有限公司嘉兴分公司综合管理部主任,主要研究方向为智能数据处理和信息安全" ]
网络出版日期:2022-12,
纸质出版日期:2022-12-20
移动端阅览
马焜, 徐玲玉, 沈晓萍, 等. 云计算中基于Shapley值改进遗传算法的虚拟机调度模型[J]. 电信科学, 2022,38(12):1-10.
Kun MA, Lingyu XU, Xiaoping SHEN, et al. Virtual machine scheduling model based on Shapley value modified genetic algorithm in cloud computing[J]. Telecommunications science, 2022, 38(12): 1-10.
马焜, 徐玲玉, 沈晓萍, 等. 云计算中基于Shapley值改进遗传算法的虚拟机调度模型[J]. 电信科学, 2022,38(12):1-10. DOI: 10.11959/j.issn.1000-0801.2022281.
Kun MA, Lingyu XU, Xiaoping SHEN, et al. Virtual machine scheduling model based on Shapley value modified genetic algorithm in cloud computing[J]. Telecommunications science, 2022, 38(12): 1-10. DOI: 10.11959/j.issn.1000-0801.2022281.
云计算系统具有服务器规模大、用户范围广的特点,但同时也消耗了大量的能源,导致云供应商的高运营成本和高碳排放等问题。云计算高度虚拟化,如何分配和管理其虚拟资源,从而保证高效的物理资源利用和能耗控制,是一个多参数博弈过程,同时也是该领域的一个研究热点。提出了一种虚拟机调度模型及基于Shapley 值的遗传算法(SV-GA),可通过经济学概念Shapley 值计算出参与工作的物理机贡献值,并通过该贡献值修正遗传算法中变异步骤的概率参数,从而完成虚拟机调度的任务。实验结果表明,与Max-Min、LrMmt及DE算法相比,SV-GA在虚拟机调度过程中的迁移时间、次数、SLA违背率、能耗等多参数博弈中具有优异的表现。
Cloud computing system has the characteristics of large-scale servers and a wide range of users.However
it also consumes a huge number of energy
resulting in high operating costs of cloud providers and high carbon emissions issue.Cloud computing is highly virtualized.How to allocate and manage the virtual resources to ensure efficient physical resource utilization and energy consumption control is a multi-parameter game problem
and it is also a research hotspot in this field.A virtual machine scheduling model and the corresponding SV-GA were proposed
which could calculate the contribution value of the physical machine participating in the work through the Shapley value
and modify the probability parameter of the mutation step in the genetic algorithm through the contribution value
so as to complete the task of virtual machine scheduling.The experimental results show that during the comparison with Max-Min
LrMmt and DE
the SV-GA shows its excellent performance in the multi-parameter game including migration time
times
SLA violation rate and energy consumption in the virtual machine scheduling process.
LAILI Y J , TAO F , ZHANG L , et al . A study of optimal allocation of computing resources in cloud manufacturing systems [J ] . The International Journal of Advanced Manufacturing Technology , 2012 , 63 ( 5-8 ): 671 - 690 .
ZHANG Q , CHENG L , BOUTABA R . Cloud computing:state-of-the-art and research challenges [J ] . Journal of Internet Services and Applications , 2010 , 1 ( 1 ): 7 - 18 .
吕廷勤 , 魏萌 . 基于蚁群优化算法的绿色云计算虚拟机迁移策略 [J ] . 西南师范大学学报(自然科学版) , 2020 , 45 ( 12 ): 78 - 84 .
LYU T Q , WEI M . Migration strategy of green cloud computing virtual machine based on ant colony optimization algorithm [J ] . Journal of Southwest China Normal University (Natural Science Edition) , 2020 , 45 ( 12 ): 78 - 84 .
YADAV R , ZHANG W Z , CHEN H , et al . MuMs:energy-aware VM selection scheme for cloud data center [C ] // Proceedings of 2017 28th International Workshop on Database and Expert Systems Applications (DEXA) . Piscataway:IEEE Press , 2017 : 132 - 136 .
GELENBE E , LENT R . Optimising server energy consumption and response time [J ] . Theoretical and Applied Informatics , 2012 , 24 ( 4 ).
YADAV R , ZHANG W Z . MeReg:managing energy-SLA tradeoff for green mobile cloud computing [J ] . Wireless Communications and Mobile Computing,2017 , 2017 :6741972.
CHAUHAN S S , JOSHI R C . A weighted mean time Min-Min Max-Min selective scheduling strategy for independent tasks on grid [C ] // Proceedings of 2010 IEEE 2nd International Advance Computing Conference . Piscataway:IEEE Press , 2010 : 4 - 9 .
刘永 , 王新华 , 王朕 , 等 . 节能及信任驱动的虚拟机资源调度 [J ] . 计算机应用研究 , 2012 , 29 ( 7 ): 2479 - 2483 .
LIU Y , WANG X H , WANG Z , et al . Energy-aware and trust-driven virtual machine scheduling [J ] . Application Re-search of Computers , 2012 , 29 ( 7 ): 2479 - 2483 .
古英汉 , 伊鹏 . 多虚拟机动态迁移情景下的服务功能链调整方法 [J ] . 小型微型计算机系统 , 2017 , 38 ( 5 ): 1022 - 1027 .
GU Y H , YI P . Method of service function chain adjustment based on multi-VM live migration [J ] . Journal of Chinese Com-puter Systems , 2017 , 38 ( 5 ): 1022 - 1027 .
AJMERA K , TEWARI T K . VMS-MCSA:virtual machine scheduling using modified clonal selection algorithm [J ] . Cluster Computing , 2021 , 24 ( 4 ): 3531 - 3549 .
GARG V , JINDAL B . Energy efficient virtual machine migration approach with SLA conservation in cloud computing [J ] . Journal of Central South University , 2021 , 28 ( 3 ): 760 - 770 .
PERUMAL V , SUBBIAH S . Power-conservative server consolidation based resource management in cloud [J ] . International Journal of Network Management , 2014 , 24 ( 6 ): 415 - 432 .
BELOGLAZOV A , BUYYA R . Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers [J ] . Concurrency and Computation:Practice and Experience , 2012 , 24 ( 13 ): 1397 - 1420 .
JALALI MOGHADDAM M , ESMAEILZADEH A , GHAVIPOUR M , et al . Minimizing virtual machine migration probability in cloud computing environments [J ] . Cluster Computing , 2020 , 23 ( 4 ): 3029 - 3038 .
AJAYI O O , BAGULA A B , MA K . Fourth industrial revolution for development:the relevance of cloud federation in healthcare support [J ] . IEEE Access , 2019 ( 7 ): 185322 - 185337 .
WINTER E . Chapter 53 the shapley value [M ] // Handbook of game theory with economic applications . Amsterdam : Elsevier , 2002 : 2025 - 2054 .
MICHALAK T P , AADITHYA K V , SZCZEPANSKI P L , et al . Efficient computation of the shapley value for game-theoretic network centrality [J ] . Journal of Artificial Intelligence Research , 2013 , 46 : 607 - 650 .
MATHEW T V . Genetic algorithm [R ] . 2012 .
ZHAO X C , GAO X S , HU Z C . Evolutionary programming based on non-uniform mutation [J ] . Applied Mathematics and Computation , 2007 , 192 ( 1 ): 1 - 11 .
CALHEIROS R N , RANJAN R , BELOGLAZOV A , et al . CloudSim:a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms [J ] . Software:Practice and Experience , 2011 , 41 ( 1 ): 23 - 50 .
HIEU N T , FRANCESCO M D , YLÄ-JÄÄSKI A , . Virtual machine consolidation with multiple usage prediction for energy-efficient cloud data centers [J ] . IEEE Transactions on Services Computing , 2020 , 13 ( 1 ): 186 - 199 .
AJAYI O O , OLADEJI F A , UWADIA C O . Multi-class load balancing scheme for QoS and energy conservation in cloud computing [J ] . West African Journal of Industrial and Academic Research , 2017 , 17 ( 1 ): 28 - 36 .
PARK K , PAI V S . CoMon:a mostly-scalable monitoring system for PlanetLab [J ] . ACM SIGOPS Operating Systems Review , 2016 , 40 ( 1 ): 65 - 74 .
KIM M H , LEE J Y , RAZA SHAH S A , et al . Min-Max exclusive virtual machine placement in cloud computing for scientific data environment [J ] . Journal of Cloud Computing , 2021 ( 10 ): 2 .
NAGMA , SINGH J , SIDHU J . Comparative analysis of VM consolidation algorithms for cloud computing [J ] . Procedia Computer Science , 2020 ( 167 ): 1390 - 1399 .
SUN J Y , ZHANG Q F , TSANG E P K . DE/EDA:a new evolutionary algorithm for global optimization [J ] . Information Sciences , 2005 , 169 ( 3-4 ): 249 - 262 .
0
浏览量
404
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构