浏览全部资源
扫码关注微信
[ "杨震(1972- ) 男,博士,天翼物联科技有限公司高级工程师,主要研究方向为人工智能、自然语言处理、物联网技术、搜索引擎" ]
[ "赵建军(1974- ),男,天翼物联科技有限公司高级工程师,主要研究方向为物联网架构、网络、平台及业务等" ]
[ "黄勇军(1970- ),男,天翼物联科技有限公司高级工程师,主要研究方向为物联网关键技术规划与管理等" ]
[ "李洁(1980- ),男,天翼物联科技有限公司高级工程师,主要研究方向为物联网人工智能、工业互联网等" ]
[ "陈楠(1981- ),男,博士,天翼物联科技有限公司高级工程师,主要研究方向为物联网关键技术与架构、物云网融合等" ]
网络出版日期:2022-12,
纸质出版日期:2022-12-20
移动端阅览
杨震, 赵建军, 黄勇军, 等. 基于网络演进的人工智能技术方向研究[J]. 电信科学, 2022,38(12):27-34.
Zhen YANG, Jianjun ZHAO, Yongjun HUANG, et al. Study on the direction of artificial intelligence technology based on network evolution[J]. Telecommunications science, 2022, 38(12): 27-34.
杨震, 赵建军, 黄勇军, 等. 基于网络演进的人工智能技术方向研究[J]. 电信科学, 2022,38(12):27-34. DOI: 10.11959/j.issn.1000-0801.2022298.
Zhen YANG, Jianjun ZHAO, Yongjun HUANG, et al. Study on the direction of artificial intelligence technology based on network evolution[J]. Telecommunications science, 2022, 38(12): 27-34. DOI: 10.11959/j.issn.1000-0801.2022298.
国家战略把人工智能(AI)及物联网(IoT)/5G同时定位为信息基础设施的重要组成部分,其中人工智能属于新技术基础设施,IoT/5G属于通信网络基础设施。这引出了“通信技术与人工智能技术融合发展”的技术方向。对于电信运营商而言,如何将人工智能技术与网络融合,重构网络技术架构,将“AI能力”作为“服务”开放,将是重要的技术演进方向。基于这一命题,探讨了未来AI和网络技术的发展方向,为未来AI技术与IoT/5G网络架构的融合发展方向提供了参考思路。
The national strategy positions artificial intelligence (AI) and Internet of things (IoT)/5G as important components of information technology facilities at the same time.Among them
AI belongs to new technology infrastructure
and IoT/5G belongs to communication network infrastructure.It leads to the technical direction of “integrate and develop communication and AI technology”.For telecom operators
how to integrate AI technology with the network
reconstruct network technology architecture
and open “AI ability” as a “service” will be an important technology evolution direction.Based on this proposition
the development direction of AI and network technology in the future was discussed
and a reference idea for the integration development and application direction of AI technology with the network architecture of IoT/5G in the future was provided.
“十四五”数字经济发展规划 [R ] . 2022 .
The plan for development of the digital economy during the“14th Five-Year” [R ] . 2022 .
“十四五”国家信息化规划 [R ] . 2021 .
The plan for national informatization during the “14th Five-Year” [R ] . 2021 .
韦乐平 . “连接+”是运营商转型的正确路径 [R ] . 2022 .
WEI L P . “Connection+” is the correct path for the operators’s transformation [R ] . 2022 .
欧阳晔 , 王立磊 , 杨爱东 , 等 . 通信人工智能的下一个十年 [J ] . 电信科学 , 2021 , 37 ( 3 ): 1 - 36 .
OUYANG Y , WANG L L , YANG A D , et al . Next decade of telecommunications artificial intelligence [J ] . Telecommunications Science , 2021 , 37 ( 3 ): 1 - 36 .
李琴 , 李唯源 , 孙晓文 , 等 . 6G 网络智能内生的思考 [J ] . 电信科学 , 2021 , 37 ( 9 ): 20 - 29 .
LI Q , LI W Y , SUN X W , et al . Thinking of native artificial intelligence in 6G networks [J ] . Telecommunications Science , 2021 , 37 ( 9 ): 20 - 29 .
ETSI . Improved operator experience through experiential networked intelligence (ENI) [R ] . 2017 .
Study on applying AI in telecommunication network:CCSA TC1-WG1#58 meeting [R ] . 2017 .
3GPP . Architecture enhancements for 5G system (5GS) to support network data analytics services:TS 23.288 [S ] . 2021 .
3GPP . RAN-centric data collection and utilization:RAN3 SI,2017.08/10 [S ] . 2018 .
3GPP . Study on the self-organizing networks (SON) for 5G networks:TR28.861 [S ] . 2019 .
3GPP . Study on management aspects of communication services:TR28.805 V1.1.0 [S ] . 2019 .
ITU-T . Architectural framework for machine learning in future networks including IMT-2020:SG13 Y.317 [S ] . 2019 .
S2-2004541 . Federated learning among multiple NWDAF instances,3GPP TSG-WG SA2 meeting #139E e-meeting [R ] . 2020 .
IMT-2030(6G)推进组 . 6G 总体愿景与潜在关键技术 [R ] . 2021 .
IMT-2030(6G) Propulsion Group . 6G overall vision and potential key technologies [R ] . 2021 .
张平 , 牛凯 , 田辉 , 等 . 6G 移动通信技术展望 [J ] . 通信学报 , 2019 , 40 ( 1 ): 141 - 148 .
ZHANG P , NIU K , TIAN H , et al . Technology prospect of 6G mobile communications [J ] . Journal on Communications , 2019 , 40 ( 1 ): 141 - 148 .
张彤 , 任奕璟 , 闫实 , 等 . 人工智能驱动的6G网络:智慧内生 [J ] . 电信科学 , 2020 , 36 ( 9 ): 14 - 22 .
ZHANG T , REN Y J , YAN S , et al . Artificial intelligence driven 6G networks:endogenous intelligence [J ] . Telecommunications Science , 2020 , 36 ( 9 ): 14 - 22 .
蒲慕明 , 徐波 , 谭铁牛 . 脑科学与类脑研究概述 [J ] . 中国科学院院刊 , 2016 , 31 ( 7 ): 725 - 736 , 714 .
PU M M , XU B , TAN T N . Brain science and brain-inspired intelligence technology—an overview [J ] . Bulletin of Chinese Academy of Sciences , 2016 , 31 ( 7 ): 725 - 736 , 714 .
熊回香 , 杨滋荣 , 蒋武轩 . 跨媒体知识图谱构建中多模态数据语义相关性研究 [J ] . 情报理论与实践 , 2019 , 42 ( 2 ): 13 - 18 , 24 .
XIONG H X , YANG Z R , JIANG W X . Semantic correlation of multimodal data in the construction of cross-media knowledge graph [J ] . Information Studies:Theory & Application , 2019 , 42 ( 2 ): 13 - 18 , 24 .
蒋逸 , 张伟 , 王佩 , 等 . 基于互联网群体智能的知识图谱构造方法 [J ] . 软件学报 , 2022 , 33 ( 7 ): 2646 - 2666 .
JIANG Y , ZHANG W , WANG P , et al . Knowledge graph construction method via Internet-based collective intelligence [J ] . Journal of Software , 2022 , 33 ( 7 ): 2646 - 2666 .
杨强 , 童咏昕 , 王晏晟 , 等 . 群体智能中的联邦学习算法综述 [J ] . 智能科学与技术学报 , 2022 , 4 ( 1 ): 29 - 44 .
YANG Q , TONG Y X , WANG Y S , et al . A survey on federated learning in crowd intelligence [J ] . Chinese Journal of Intelligent Science and Technology , 2022 , 4 ( 1 ): 29 - 44 .
郎春雨 , 侯霞 . 基于迁移学习的实体关系抽取技术综述 [J ] . 北京信息科技大学学报(自然科学版) , 2022 , 37 ( 1 ): 65 - 70 .
LANG C Y , HOU X . Review of transfer learning technology for entity and relation extraction [J ] . Journal of Beijing Information Science & Technology University , 2022 , 37 ( 1 ): 65 - 70 .
王萌 , 王昊奋 , 李博涵 , 等 . 新一代知识图谱关键技术综述 [J ] . 计算机研究与发展 , 2022 , 59 ( 9 ): 1947 - 1965 .
WANG M , WANG H F , LI B H , et al . Survey on key technologies of new generation knowledge graph [J ] . Journal of Computer Research and Development , 2022 , 59 ( 9 ): 1947 - 1965 .
赵凯琳 , 靳小龙 , 王元卓 . 小样本学习研究综述 [J ] . 软件学报 , 2021 , 32 ( 2 ): 349 - 369 .
ZHAO K L , JIN X L , WANG Y Z . Survey on few-shot learning [J ] . Journal of Software , 2021 , 32 ( 2 ): 349 - 369 .
潘崇煜 , 黄健 , 郝建国 , 等 . 融合零样本学习和小样本学习的弱监督学习方法综述 [J ] . 系统工程与电子技术 , 2020 , 42 ( 10 ): 2246 - 2256 .
PAN C Y , HUANG J , HAO J G , et al . Survey of weakly supervised learning integrating zero-shot and few-shot learning [J ] . Systems Engineering and Electronics , 2020 , 42 ( 10 ): 2246 - 2256 .
张鲁宁 , 左信 , 刘建伟 . 零样本学习研究进展 [J ] . 自动化学报 , 2020 , 46 ( 1 ): 1 - 23 .
ZHANG L N , ZUO X , LIU J W . Research and development on zero-shot learning [J ] . Acta Automatica Sinica , 2020 , 46 ( 1 ): 1 - 23 .
陈学松 , 杨宜民 . 强化学习研究综述 [J ] . 计算机应用研究 , 2010 , 27 ( 8 ): 2834 - 2838 , 2844 .
CHEN X S , YANG Y M . Reinforcement learning:survey of recent work [J ] . Application Research of Computers , 2010 , 27 ( 8 ): 2834 - 2838 , 2844 .
C.J.Abate , 禾沐 . 机器学习的未来:Daniel Situnayake访谈 [J ] . 单片机与嵌入式系统应用 , 2021 , 21 ( 6 ): 1 - 3 , 6 .
ABATE C J , HE M . The future of machine learning:interview with Daniel Situnayake [J ] . Microcontrollers & Embedded Systems , 2021 , 21 ( 6 ): 1 - 3 , 6 .
秦全德 , 程适 , 李丽 , 等 . 人工蜂群算法研究综述 [J ] . 智能系统学报 , 2014 , 9 ( 2 ): 127 - 135 .
QIN Q D , CHENG S , LI L , et al . Artificial bee colony algorithm:a survey [J ] . CAAI Transactions on Intelligent Systems , 2014 , 9 ( 2 ): 127 - 135 .
0
浏览量
471
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构