浏览全部资源
扫码关注微信
1. 南京邮电大学通信与信息工程学院,江苏 南京 210003
2. 宽带无线通信与传感网技术教育部重点实验室,江苏 南京 210003
[ "赵鑫(1995- ),男,南京邮电大学通信与信息工程学院硕士生,主要研究方向为低轨卫星通信与网络规划" ]
[ "赵光(1995- ),男,南京邮电大学通信与信息工程学院硕士生,主要研究方向为低轨卫星通信与网络规划" ]
[ "陈睿(1991- ),女,南京邮电大学通信与信息工程学院博士生,主要研究方向为低轨卫星通信与网络规划" ]
[ "王文鼐(1966- ),男,南京邮电大学教授,主要研究方向为通信网技术理论、通信网仿真与网络规划" ]
网络出版日期:2023-02,
纸质出版日期:2023-02-20
移动端阅览
赵鑫, 赵光, 陈睿, 等. 低轨卫星网络的航点分段路由及业务性能分析[J]. 电信科学, 2023,39(2):48-58.
Xin ZHAO, Guang ZHAO, Rui CHEN, et al. Analysis on waypoint-segment routing and performance evaluation for LEO satellite networks[J]. Telecommunications science, 2023, 39(2): 48-58.
赵鑫, 赵光, 陈睿, 等. 低轨卫星网络的航点分段路由及业务性能分析[J]. 电信科学, 2023,39(2):48-58. DOI: 10.11959/j.issn.1000-0801.2023020.
Xin ZHAO, Guang ZHAO, Rui CHEN, et al. Analysis on waypoint-segment routing and performance evaluation for LEO satellite networks[J]. Telecommunications science, 2023, 39(2): 48-58. DOI: 10.11959/j.issn.1000-0801.2023020.
提出一种基于卫星航点的分段路由(waypoint-segment routing,WSR)算法,WSR算法以可预测的卫星网络拓扑运动周期为基础,根据卫星节点链路状态确定卫星航点的位置;利用分段路由灵活规划分组传输路径的机制,提前响应网络拓扑变化,计算得到一条不受网络拓扑快照切换影响的传输路径。基于NS-3仿真平台进行仿真实验,设置源节点与目标节点在反向缝同侧与不同侧两种场景,选取优化链路状态路由(optimized link state routing,OLSR)算法和最短路径算法与WSR进行时延抖动与分组丢失率的对比分析。实验证明WSR与OLSR相比,两种场景下最大时延抖动分别降低46 ms与126 ms,分组丢失率分别降低30%和21%,并且能够解决拓扑快照切换导致分组传输路径中断的问题。
A waypoint-segment routing (WSR) algorithm was proposed.Based on the predictable periodicity of the topological changes of satellite network
the location of satellite waypoints based on the link state of satellite nodes at the current moment was determined by WSR algorithm.The mechanism of flexible planning of packet transmission paths was responded by segment routing to changes in satellite network topology in advance
and a packet transmission path that was not affected by network topology snapshot switch was calculated.Simulation experiment was based on the NS-3
and the optimized link state routing (OLSR) algorithm and the shortest path algorithm were selected to compare with WSR in order to analyze the delay jitter and packet loss rate.It was proved that compared with OLSR
the maximum delay jitter of WSR was reduced by 46 ms and 126 ms respectively in the two scenarios
the packet loss rate was reduced by 30% and 21% respectively
and the problem of packet transmission path interruption caused by topology snapshot switching can be solved.
ZHANG J R , ZHU S B , BAI H F , et al . Optimization strategy to solve transmission interruption caused by satellite-ground link switching [J ] . IEEE Access , 2020 ( 8 ): 32975 - 32988 .
LI C C , ZHANG Y S , XIE R C , et al . Integrating edge computing into low earth orbit satellite networks:architecture and prototype [J ] . IEEE Access , 2021 ( 9 ): 39126 - 39137 .
MARCO G , MICHELE Z . Non-terrestrial networks in the 6G era:challenges and opportunities [J ] . IEEE Network , 2021 , 35 ( 2 ): 244 - 251 .
GUO H Z , LI J Y , LIU J J , et al . A survey on space-air-ground-sea integrated network security in 6G [J ] . IEEE Communications Surveys & Tutorials , 2022 , 24 ( 1 ): 53 - 87 .
JIA Z Y , SHENG M , LI J D , et al . VNF-based service provision in software defined LEO satellite networks [J ] . IEEE Transactions on Wireless Communications , 2021 , 20 ( 9 ): 6139 - 6153 .
KHALIFE J , NEINAVAIE M , KASSAS Z M . The first carrier phase tracking and positioning results with Starlink LEO satellite signals [J ] . IEEE Trans on Aerospace and Electronic Systems , 2022 , 58 ( 2 ): 1487 - 1491 .
PORTILLO I D , CAMERON B G , CRAWLEY E F . A technical comparison of three low earth orbit satellite constellation systems to provide global broadband [J ] . Acta Astronautica , 2019 ( 159 ): 123 - 135 .
XIE H R , ZHAN Y F , ZENG G M , et al . LEO Mega-constellations for 6G global coverage:challenges and opportunities [J ] . IEEE Access , 2021 ( 9 ): 164223 - 164244 .
OSORO O B , OUGHTON E J . A techno-economic framework for satellite networks applied to low earth orbit constellations:assessing Starlink,OneWeb and Kuiper [J ] . IEEE Access , 2021 ( 9 ): 141611 - 141625 .
RABJERG J W , LEYVA-MAYORGA I , SORET B , et al . Exploiting topology awareness for routing in LEO satellite constellations [C ] // Proceedings of 2021 IEEE Global Communications Conference (GLOBECOM) . Piscataway:IEEE Press , 2021 : 1 - 6 .
LIU J , LUO R Z , HUANG T , et al . A load balancing routing strategy for LEO satellite network [J ] . IEEE Access , 2020 ( 8 ): 155136 - 155144 .
RUIZ-DE-AZÚA J A , CAMPS A , CALVERAS AUGÉ A . Benefits of using mobile Ad-Hoc network protocols in federated satellite systems for polar satellite missions [J ] . IEEE Access , 2018 ( 6 ): 56356 - 56367 .
YUE P C , QU H , ZHAO J H , et al . An inter satellite link handover management scheme based on link remaining time [C ] // Proceedings of the 2nd IEEE International Conference on Computer and Communications . Piscataway:IEEE Press , 2016 : 1799 - 1803 .
RODRIGUEZ C G , FRANCK L , BAUDOIN C , et al . OLSR-H:a satellite-terrestrial hybrid broadcasting for OLSR signaling [C ] // Proceedings of International Conference on Personal Satellite Services . Heidelberg:Springer , 2011 : 143 - 150 .
WERNER M , DELUCCHI C , VOGEL H , et al . ATM-based routing in LEO/MEO satellite networks with intersatellite links [J ] . IEEE Journal on Selected Areas in Communications , 1997 , 15 ( 1 ): 69 - 82 .
齐星 , 柳震 , 梁家辉 , 等 . 一种面向低轨遥感星座的路由任务规划算法研究 [J ] . 电信科学 , 2022 , 38 ( 4 ): 30 - 38 .
QI X , LIU Z , LIANG J H , et al . Research on a routing task planning algorithm for LEO remote sensing constellation [J ] . Telecommunications Science , 2022 , 38 ( 4 ): 30 - 38 .
ZHU Y , RUI L L , QIU X S , et al . Double-layer satellite communication network routing algorithm based on priority and failure probability [C ] // Proceedings of the 15th International Wireless Communications & Mobile Computing Conference . Piscataway:IEEE Press , 2019 : 1518 - 1523 .
LIU H Y , SUN F C , YANG Z , et al . A novel distributed routing algorithm for LEO satellite network [C ] // Proceedings of 2012 International Conference on Industrial Control and Electronics Engineering . Los Alamitos:IEEE Computer Society , 2012 : 37 - 40 .
LIU F , QIAN G . Simulation analysis of network capacity for LEO satellite [C ] // Proceedings of 2020 International Conference on Computer Science and Management Technology . Piscataway:IEEE Press , 2020 : 100 - 104 .
VENTRE P L , SALSANO S , CIANFRANI A , et al . Segment routing:a comprehensive survey of research activities,standardization efforts,and implementation results [J ] . IEEE Communications Surveys Tutorials , 2021 , 23 ( 1 ): 182 - 221 .
ABDULLAH Z N , AHMAD I , HUSSAIN I . Segment routing in software defined networks:a survey [J ] . IEEE Communications Surveys & Tutorials , 2019 , 21 ( 1 ): 464 - 486 .
PAN G F , YE J , AN J P , et al . Latency versus reliability in LEO mega-constellations:terrestrial,aerial,or space relay [J ] . IEEE Transactions on Mobile Computing , 2022 ,Early Access.
XIE X Y , WANG J , GUO X B , et al . Performance evaluation of Ad-Hoc routing protocols in hybrid MANET-Satellite network [C ] // Proceedings of International Conference on Machine Learning and Intelligent Communications . Heidelberg:Springer , 2018 : 500 - 509 .
PAN T , HUANG T , LI X C , et al . OPSPF:orbit prediction shortest path first routing for resilient LEO satellite networks [C ] // Proceedings of 2019 IEEE International Conference on Communications . Piscataway:IEEE Press , 2019 : 1 - 6 .
LU N N , ZHANG H P , MA J . A novel inter-satellite routing protocol based on link recognizing [C ] // Proceedings of International Conference on Cyberspace Technology (CCT 2014) . Bangalore,KA:IET , 2014 : 1 - 4 .
RUIZ J A , CALVERAS A , CAMPS A . Internet of satellites (IoSat):analysis of network models and routing protocol requirements [J ] . IEEE Access , 2018 ( 6 ): 20390 - 20411 .
LIU W , TAO Y , LIU L . Load-balancing routing algorithm based on segment routing for traffic return in LEO satellite networks [J ] . IEEE Access , 2019 ( 7 ): 112044 - 112053 .
ZHOU J X , ZHANG Z P , ZHOU N . A segment list management algorithm based on segment routing [C ] // Proceeding of IEEE the 11th International Conference on Communication Software and Networks . Piscataway:IEEE Press , 2019 : 297 - 302 .
0
浏览量
222
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构