浏览全部资源
扫码关注微信
[ "赵亚飞(1987- ),男,博士,北京邮电大学网络与交换技术国家重点实验室副研究员,主要研究方向为低轨卫星通信导航一体化" ]
[ "闫冰(1999- ),男,北京邮电大学网络与交换技术国家重点实验室硕士生,主要研究方向为低轨星座时频基准建立与维持" ]
[ "孙耀华(1992- ),男,博士,北京邮电大学网络与交换技术国家重点实验室副教授,主要研究方向为低轨卫星通信和无线接入网络智能化" ]
[ "彭木根(1978- ),男,博士,北京邮电大学网络与交换技术国家重点实验室教授,主要研究方向为空间信息通信、通感算一体化、雾无线接入网络等" ]
网络出版日期:2023-05,
纸质出版日期:2023-05-20
移动端阅览
赵亚飞, 闫冰, 孙耀华, 等. 低轨星座通导一体化:现状、机遇和挑战[J]. 电信科学, 2023,39(5):90-100.
Yafei ZHAO, Bing YAN, Yaohua SUN, et al. Communication and navigation integration for LEO constellations:status, opportunities, and challenges[J]. Telecommunications science, 2023, 39(5): 90-100.
赵亚飞, 闫冰, 孙耀华, 等. 低轨星座通导一体化:现状、机遇和挑战[J]. 电信科学, 2023,39(5):90-100. DOI: 10.11959/j.issn.1000-0801.2023087.
Yafei ZHAO, Bing YAN, Yaohua SUN, et al. Communication and navigation integration for LEO constellations:status, opportunities, and challenges[J]. Telecommunications science, 2023, 39(5): 90-100. DOI: 10.11959/j.issn.1000-0801.2023087.
随着毫米波、高通量卫星通信等技术日渐成熟,及其对全球宽带通信服务的迫切需求,低轨巨型通信星座建设受到极大关注,高达数千颗卫星的低轨通信星座被部署,大量部署的低轨通信卫星实现了高频射频信号对地面的多重覆盖,同时地面通信资源为信号接收提供了硬件平台,为通信导航一体化的发展创造了条件。讨论了低轨通导一体化星座的现状、机遇和挑战,重点阐述了低轨通导一体化星座与全球卫星导航系统所需资源的差异,按照空间段、地面段和用户段分别进行了阐述,最后给出了结论和对未来研究的展望。
With the growing maturity of millimeter wave technology and high-throughput satellite communication technology
as well as the urgent need for global broadband communication services
the construction of LEO giant communication constellation has attracted great attention
and up to thousands of satellites have been deployed.A large number of LEO communication satellites have realized multiple and repeated coverage of high-frequency radio frequency signals on the ground.At the same time
ground communication resources provide a hardware platform for signal reception and create conditions for the development of integrated communication and navigation.The status quo
opportunities and challenges of the integrated LEO navigation constellation were discussed
and the differences of resources required by the integrated LEO navigation constellation and the global navigation satellite system were emphatically expounded.In terms of space segment
ground segment and user segment
the conclusions and prospects for future research were presented.
NEINAVAIE M , SHADRAM Z , KOZHAYA S , et al . First results of differential Doppler positioning with unknown Starlink satellite signals [C ] // Proceedings of 2022 IEEE Aerospace Conference (AERO) . Piscataway:IEEE Press , 2022 : 1 - 14 .
晓春 . OneWeb 太空互联网低轨星座的新进展 [J ] . 卫星应用 , 2016 ( 6 ): 75 - 77 .
XIAO C . New progressin LEO constellation of OneWeb space Internet [J ] . Satellite Application , 2016 ( 6 ): 75 - 77 .
MARKOVITZ O , SEGAL M . Advanced routing algorithms for low orbit satellite constellations [C ] // Proceedings of ICC 2021 IEEE International Conference on Communications . Piscataway:IEEE Press , 2021 : 1 - 6 .
PERDUE L , FISCHER J , DRIES R . Signals of opportunity as an augmentation or alternative to GNSS for critical timing applications [J ] . GPS World , 2017 , 28 ( 3 ): 49 - 49 .
JARDAK N , JAULT Q . The potential of LEO satellite-based opportunistic navigation for high dynamic applications [J ] . Sensors (Basel,Switzerland) , 2022 , 22 ( 7 ): 2541 .
王磊 , 陈锐志 , 李德仁 , 等 . 珞珈一号低轨卫星导航增强系统信号质量评估 [J ] . 武汉大学学报(信息科学版) , 2018 , 43 ( 12 ): 2191 - 2196 .
WANG L , CHEN R Z , LI D R , et al . Quality assessment of the LEO navigation augmentation signals from Luojia-1A satellite [J ] . Geomatics and Information Science of Wuhan University , 2018 , 43 ( 12 ): 2191 - 2196 .
MAAREF M , KHALIFE J , KASSAS Z . Integrity monitoring of LTE signals of opportunity-based navigation for autonomous ground vehicles [J ] . GPS World , 2018 , 29 ( 10 ): 49 - 49 .
NEINAVAIE M , KHALIFE J , KASSAS Z M . Acquisition,Doppler tracking,and positioning with starlink LEO satellites:first results [J ] . IEEE Transactions on Aerospace and Electronic Systems , 2022 , 58 ( 3 ): 2606 - 2610 .
KHALIFE J , NEINAVAIE M , KASSAS Z M . The first carrier phase tracking and positioning results with starlink LEO satellite signals [J ] . IEEE Transactions on Aerospace and Electronic Systems , 2022 , 58 ( 2 ): 1487 - 1491 .
王磊 , 李德仁 , 陈锐志 , 等 . 低轨卫星导航增强技术:机遇与挑战 [J ] . 中国工程科学 , 2020 , 22 ( 2 ): 144 - 152 .
WANG L , LI D R , CHEN R Z , et al . Low earthorbiter (LEO) navigation augmentation:opportunities and challenges [J ] . Strategic Study of CAE , 2020 , 22 ( 2 ): 144 - 152 .
张小红 , 马福建 . 低轨导航增强 GNSS 发展综述 [J ] . 测绘学报 , 2019 , 48 ( 9 ): 1073 - 1087 .
ZHANG X H , MA F J . Review on the development of low orbit navigation enhanced GNSS [J ] . Acta Geodaetica et Cartographica Sinica , 2019 , 48 ( 9 ): 1073 - 1087 .
GE H B , LI B F , NIE L , et al . LEO constellation optimization for LEO enhanced global navigation satellite system (LeGNSS) [J ] . Advances in Space Research , 2020 , 66 ( 3 ): 520 - 532 .
MORTLOCK T , KASSAS Z M . Assessing machine learning for LEO satellite orbit determination in simultaneous tracking and navigation [C ] // Proceedings of 2021 IEEE Aerospace Conference (50100) . Piscataway:IEEE Press , 2021 : 1 - 8 .
MICHALAK G , GLASER S , NEUMAYER K . Precise orbit and earth parameter determination supported by LEO satellites,inter-satellite links and synchronized clocks of a future GNSS [J ] . Advances in Space Research , 2021 , 68 ( 12 ): 4753 - 4782 .
SU Y T , LIU Y Q , ZHOU Y Q , et al . Broadband LEO satellite communications:architectures and key technologies [J ] . IEEE Wireless Communications , 2019 , 26 ( 2 ): 55 - 61 .
PROL F S , FERRE R M , SALEEM Z , et al . Position,navigation,and timing (PNT) through low earth orbit (LEO) satellites:asurvey on current status,challenges,and opportunities [J ] . IEEE Access , 2022 ( 10 ): 83971 - 84002 .
龚宇鹏 , 张世杰 . 偶数重连续覆盖的 Walker 星座设计方法 [J ] . 宇航学报 , 2022 , 43 ( 9 ): 1163 - 1175 .
GONG Y P , ZHANG S J . Design method of Walker constellation with even multiple continuous coverage [J ] . Journal of Astronautics , 2022 , 43 ( 9 ): 1163 - 1175 .
徐哲宇 , 杜兰 , 刘泽军 , 等 . 基于 Flower 星座的区域导航增强低轨卫星星座设计与优化 [C ] // 第十一届中国卫星导航年会论文集——S07卫星导航增强技术 . [出版地不详:出版机构不详] , 2020 : 116 - 120 .
XU Z Y , DU L , LIU Z J , et al . Design and optimization of LEO satellite Constellation for Regional navigation Enhancement based on Flower Constellation [C ] // Proceedings of the 11th Annual China Satellite Navigation Conference .[S.l.:s.n. ] , 2020 : 116 - 120 .
水浩然 , 陈勇 , 陈宏新 . 基于遗传算法的寻优解卫星星座优化设计策略 [J ] . 导航定位与授时 , 2021 , 8 ( 5 ): 45 - 53 .
SHUI H R , CHEN Y , CHEN H X . Optimal design strategy of satellite constellation based on genetic algorithm [J ] . Navigation Positioning and Timing , 2021 , 8 ( 5 ): 45 - 53 .
CHEETHAM B , . Cislunar autonomous positioning system technology operations and navigation experiment (CAPSTONE) [C ] // Proceedings of ASCEND2020 . Reston:AIAA , 2020 :4140.
THOMAS S , BRAD C , ALEC F , et al . CAPSTONE:acubesat pathfinder for the lunar ggateway ecosystem [C ] // Small Satellite Conference ,[S.l.:s.n ] , 2021 .
VAN BUREN D , AXELRAD P , PALO S . Design of a high-stability heterogeneous clock system for small satellites in LEO [J ] . GPS Solutions , 2021 , 25 ( 3 ): 1 - 14 .
MENG Y S , BIAN L , HAN L , et al . A global navigation augmentation system based on LEO communication constellation [C ] // Proceedings of 2018 European Navigation Conference (ENC) . Piscataway:IEEE Press , 2018 : 65 - 71 .
BL A , HGA B , MG B , et al . LEO enhanced global navigation satellite system (LeGNSS) for real-time precise positioning services [J ] . Advances in Space Research , 2019 , 63 ( 1 ): 73 - 93 .
CASSEL R S , SCHERER D R , WILBURNE D R , et al . Impact of improved oscillator stability on LEO-based satellite navigation [C ] // Proceedings of the 2022 International Technical Meeting of The Institute of Navigation .[S.l.:s.n ] , 2022 : 893 - 905 .
MONTENBRUCK O , GARCIA-FERNANDEZ M , WILLIAMS J . Performance comparison of semicodeless GPS receivers for LEO satellites [J ] . GPS Solutions , 2006 , 10 ( 4 ): 249 - 261 .
MA F J , ZHANG X H , HU J H , et al . Frequency design of LEO-based navigation augmentation signals for dual-band ionospheric-free ambiguity resolution [J ] . GPS Solutions , 2022 , 26 ( 2 ): 53 .
IANNUCCI P A , HUMPHREYS T E . Fused low-earth-orbit GNSS [J ] . IEEE Transactions on Aerospace and Electronic Systems , 2022 ( 99 ): 1 .
WANG M Y , LIU G L , MA R F , et al . A novel navigation-communication integrated waveform for LEO network [C ] // Proceedings of GLOBECOM 2022-2022 IEEE Global Communications Conference . Piscataway:IEEE Press , 2023 : 747 - 752 .
PETER M , OLIVER M , UWE H . Performance evaluation of the early CNAV navigation mmessage [J ] . Navigation Journal of the Institute of Navigation , 2016 , 62 ( 3 ): 219 - 228 .
HAUSCHILD A , MONTENBRUCK O . Precise real‐time navigation of LEO satellites using GNSS broadcast ephemerides [J ] . NAVIGATION , 2021 ( 68 ): 419 - 432 .
XIE X , GENG T , ZHAO Q L , et al . Design and validation of broadcast ephemeris for low earth orbit satellites [J ] . GPS Solutions , 2018 , 22 ( 2 ): 54 .
GUO X L , WANG L , FU W J , et al . An optimal design of the broadcast ephemeris for LEO navigation augmentation systems [J ] . Geo-Spatial Information Science , 2022 , 25 ( 1 ): 34 - 46 .
YUAN Y B , WANG N B , LI Z S , et al . The BeiDou global broadcast ionospheric delay correction model (BDGIM) and its preliminary performance evaluation results [J ] . Navigation , 2019 , 66 ( 1 ): 55 - 69 .
HERNÁNDEZ-PAJARES M , JUAN J M , SANZ J , et al . The IGS VTEC maps:a reliable source of ionospheric information since 1998 [J ] . Journal of Geodesy , 2009 , 83 ( 3 ): 263 - 275 .
KHALIFE J J , KASSAS Z M . Receiver design for Doppler positioning with LEO satellites [C ] // Proceedings of ICASSP 2019-2019 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP) . Piscataway:IEEE Press , 2019 : 5506 - 5510 .
KASSAS Z , MORALES J , KHALIFE J . New-age satellite-based navigation-STAN:simultaneous tracking and navigation with LEO satellite signals [J ] . Inside GNSS Magazine , 2019 , 14 ( 4 ): 56 - 65 .
TAN ZZ , QIN H L , CONG L , et al . Positioning using Iridium satellite signals of opportunity in weak signal environment [J ] . Electronics , 2019 , 9 ( 37 ): 1 - 18 .
FARHANGIAN F , LANDRY J R . Multi-constellation software-defined receiver for Doppler positioning with LEO satellites [J ] . Sensors , 2020 , 20 ( 5866 ): 1 - 17 .
THOMPSON S , MARTIN S , BEVLY D . Single differenced Doppler positioning with low earth orbit signals of opportunity and angle of arrival estimation [C ] // Proceedings of the 2021 International Technical Meeting of The Institute of Navigation,The International Technical Meeting of the The Institute of Navigation .[S.l.:s.n. ] , 2021 : 497 - 509 .
REID T G R , CHANB GOEL A , et al . Satellite navigation for the age of autonomy [C ] // Proceedings of 2020 IEEE/ION Position,Location and Navigation Symposium (PLANS) . Piscataway:IEEE Press , 2020 : 342 - 352 .
0
浏览量
687
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构