浏览全部资源
扫码关注微信
1. 江西理工大学理学院,江西 赣州 341000
2. 嘉兴学院信息科学与工程学院,浙江 嘉兴 314000
3. 浙江省医学电子与数字健康重点实验室,浙江 嘉兴 314000
[ "卢敏(1964– ),男,江西理工大学理学院教授,主要研究方向为电子材料与器件、智能通信" ]
[ "秦泽豪(1998– ),男,江西理工大学理学院硕士生,嘉兴学院信息科学与工程学院联培研究生,主要研究方向为智能通信、深度学习" ]
[ "陈志辉(1999– ),男,江西理工大学理学院硕士生,嘉兴学院信息科学与工程学院联培研究生,主要研究方向为人工智能、深度学习" ]
[ "张敏(1996– ),女,江西理工大学理学院硕士生,嘉兴学院信息科学与工程学院联培研究生,主要研究方向为深度学习与智能通信" ]
[ "乐光学(1963– ),男,博士,嘉兴学院信息科学与工程学院、浙江省医学电子与数字健康重点实验室教授,主要研究方向为多云融合与协同服务、边缘计算与一体化通信网络、深度学习与智能通信" ]
网络出版日期:2023-04,
纸质出版日期:2023-04-20
移动端阅览
卢敏, 秦泽豪, 陈志辉, 等. 基于1D-Concatenate的信道估计DNN模型优化方法[J]. 电信科学, 2023,39(4):71-86.
Min LU, Zehao QIN, Zhihui CHEN, et al. 1D-Concatenate based channel estimation DNN model optimization method[J]. Telecommunications science, 2023, 39(4): 71-86.
卢敏, 秦泽豪, 陈志辉, 等. 基于1D-Concatenate的信道估计DNN模型优化方法[J]. 电信科学, 2023,39(4):71-86. DOI: 10.11959/j.issn.1000-0801.2023097.
Min LU, Zehao QIN, Zhihui CHEN, et al. 1D-Concatenate based channel estimation DNN model optimization method[J]. Telecommunications science, 2023, 39(4): 71-86. DOI: 10.11959/j.issn.1000-0801.2023097.
为提高DNN模型在无线通信中信道估计精度,提出一种基于1D-Concatenate的信道估计DNN模型优化方法。该方法将Concatenate进行一维(1D)数据转换,以跳跃连接的方式引入DNN模型,抑制梯度消失问题,运用1D-Concatenate恢复网络训练过程中丢失的数据特征,提高DNN信道估计精度。为验证优化方法的有效性,选取较典型的基于DNN的无线通信信道估计模型进行对比仿真实验。实验结果表明,本文提出的优化方法对已有DNN模型的估计增益提升可达77.10%,在高信噪比下信道增益提升可达3 dB。该优化方法能有效提高DNN模型在无线通信中的信道估计精度,特别是高信噪比下提升效果显著。
In order to improve the channel estimation accuracy of DNN model in wireless communication
a DNN model optimization method based on 1D-Concatenate was proposed.In this method
Concatenate performs one-dimensional data transformation
the DNN model was introduced by hopping connection
the gradient disappearance problem was suppressed
and 1D-Concatenate was used to restore the data features lost during network training to improve the accuracy of DNN channel estimation.In order to verify the effectiveness of the optimization method
a typical DNN-based wireless communication channel estimation model was selected for comparative simulation experiments.Experimental results show that the estimated gain of the existing DNN model can be increased by 77.10% by the proposed optimization method
and the channel gain can be increased by up to 3 dB under high signal-to-noise ratio.This optimization method can effectively improve the channel estimation accuracy of DNN model in wireless communication
especially the improvement effect is significant under high signal-to-noise ratio.
ZHANG Z F , WANG C , GAN C Q , et al . Automatic modulation classification using convolutional neural network with features fusion of SPWVD and BJD [J ] . IEEE Transactions on Signal and Information Processing Over Networks , 2019 , 5 ( 3 ): 469 - 478 .
廖勇 , 花远肖 , 姚海梅 , 等 . 高速移动环境下基于深度学习的信道估计方法 [J ] . 电子学报 , 2019 , 47 ( 8 ): 1701 - 1707 .
LIAO Y , HUA Y X , YAO H M , et al . Channel estimation method based on deep learning in high-speed mobile environments [J ] . Acta Electronica Sinica , 2019 , 47 ( 8 ): 1701 - 1707 .
张继东 , 郑宝玉 . 基于导频的OFDM信道估计及其研究进展 [J ] . 通信学报 , 2003 , 24 ( 11 ): 116 - 124 .
ZHANG J D , ZHENG B Y . Overview of pilot-aided channel estimation in OFDM [J ] . Journal of China Institute of Communications , 2003 , 24 ( 11 ): 116 - 124 .
华郁秀 , 李荣鹏 , 赵志峰 , 等 . 基于生成对抗网络的 MIMO信道估计方法 [J ] . 电信科学 , 2021 , 37 ( 6 ): 14 - 22 .
HUA Y X , LI R P , ZHAO Z F , et al . MIMO channel estimation method based on generating countermeasure network [J ] . Telecommunications Science , 2021 , 37 ( 6 ): 14 - 22 .
HUYNH-THE T , HUA C H , NGO T T , et al . Image representation of pose-transition feature for 3D skeleton-based action recognition [J ] . Information Sciences , 2020 ( 513 ): 112 - 126 .
PURWINS H , LI B , VIRTANEN T , et al . Deep learning for audio signal processing [J ] . IEEE Journal of Selected Topics in Signal Processing , 2019 , 13 ( 2 ): 206 - 219 .
IQBAL A , THAM M L , CHANG Y C . Double deep Q-network for power allocation in cloud radio access network [C ] // Proceedings of 2020 IEEE 3rd International Conference on Computer and Communication Engineering Technology (CCET) . Piscataway:IEEE Press , 2020 : 272 - 277 .
IQBAL A , THAM M L , CHANG Y C . Double deep Q-network-based energy-efficient resource allocation in cloud radio access network [J ] . IEEE Access , 2021 ( 9 ): 20440 - 20449 .
YE H , LI G Y , JUANG B H . Power of deep learning for channel estimation and signal detection in OFDM systems [J ] . IEEE Wireless Communications Letters , 2018 , 7 ( 1 ): 114 - 117 .
陈建廷 , 向阳 . 深度神经网络训练中梯度不稳定现象研究综述 [J ] . 软件学报 , 2018 , 29 ( 7 ): 2071 - 2091 .
CHEN J T , XIANG Y . Survey of unstable gradients in deep neural network training [J ] . Journal of Software , 2018 , 29 ( 7 ): 2071 - 2091 .
GAO X X , JIN S , WEN C K , et al . ComNet:combination of deep learning and expert knowledge in OFDM receivers [J ] . IEEE Communications Letters , 2018 , 22 ( 12 ): 2627 - 2630 .
BAO Y C , TAN Z Y , SUN H F , et al . SimNet:simplified deep neural networks for OFDM channel estimation [C ] // Proceedings of 2020 IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP) . Piscataway:IEEE Press , 2020 : 348 - 352 .
YANG Y W , GAO F F , MA X L , et al . Deep learning-based channel estimation for doubly selective fading channels [J ] . IEEE Access , 2019 ( 7 ): 36579 - 36589 .
SOLTANI M , POURAHMADI V , MIRZAEI A , et al . Deep learning-based channel estimation [J ] . IEEE Communications Letters , 2019 , 23 ( 4 ): 652 - 655 .
SOLTANI M , POURAHMADI V , SHEIKHZADEH H . Pilot pattern design for deep learning-based channel estimation in OFDM systems [J ] . IEEE Wireless Communications Letters , 2020 , 9 ( 12 ): 2173 - 2176 .
CHENG C H , HUANG Y F , CHEN H C , et al . Neural network-based estimation for OFDM channels [C ] // Proceedings of 2015 IEEE 29th International Conference on Advanced Information Networking and Applications . Piscataway:IEEE Press , 2015 : 600 - 604 .
BAI Q B , WANG J T , ZHANG Y , et al . Deep learning-based channel estimation algorithm over time selective fading channels [J ] . IEEE Transactions on Cognitive Communications and Networking , 2020 , 6 ( 1 ): 125 - 134 .
唐昊 , 韩东洪 , 周蕊 . 浅析 OFDM 技术及其应用 [J ] . 网络安全技术与应用 , 2019 ( 5 ): 62 - 64 .
TANG H , HAN D H , ZHOU R . Analysis of OFDM technology and its application [J ] . Network Security Technology & Application , 2019 ( 5 ): 62 - 64 .
LI L J , CHEN H , CHANG H H , et al . Deep residual learning meets OFDM channel estimation [J ] . IEEE Wireless Communications Letters , 2020 , 9 ( 5 ): 615 - 618 .
HUANG G , LIU Z , VAN DER MAATEN L , et al . Densely connected convolutional networks [C ] // Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2017 : 2261 - 2269 .
ZHAO Z Y , VURAN M C , GUO F J , et al . Deep-waveform:a learned OFDM receiver based on deep complex-valued convolutional networks [J ] . IEEE Journal on Selected Areas in Communications , 2021 , 39 ( 8 ): 2407 - 2420 .
JIANG R K , WANG X T , CAO S , et al . Deep neural networks for channel estimation in underwater acoustic OFDM systems [J ] . IEEE Access , 2019 ( 7 ): 23579 - 23594 .
BASODI S , JI C Y , ZHANG H P , et al . Gradient amplification:an efficient way to train deep neural networks [J ] . Big Data Mining and Analytics , 2020 , 3 ( 3 ): 196 - 207 .
0
浏览量
496
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构