浏览全部资源
扫码关注微信
1. 浙江大学,浙江 杭州 310027
2. 中国电信股份有限公司浙江分公司,浙江 杭州 310014
3. 华信咨询设计研究院有限公司,浙江 杭州 310052
[ "王建斌(1977- ),男,浙江大学博士生,中国电信股份有限公司浙江分公司无线中心主任、正高级工程师,长期从事无线网络新技术、新产品的研究以及无线网络的规划、优化等工作" ]
[ "王淑春(1967- ),女,中国电信股份有限公司浙江分公司高级工程师,长期从事云网技术及规划、工程管理等工作" ]
[ "廖尚金(1979- ),男,华信咨询设计研究院有限公司高级工程师,长期从事通信网络的规划咨询和设计工作" ]
[ "施淑媛(1990- ),女,中国电信股份有限公司浙江分公司高级工程师,从事无线网络规划与优化工作" ]
网络出版日期:2023-04,
纸质出版日期:2023-04-20
移动端阅览
王建斌, 王淑春, 廖尚金, 等. 基于DCNN-LSTM负荷预测算法的5G基站节能系统研究[J]. 电信科学, 2023,39(4):133-141.
Jianbin WANG, Shuchun WANG, Shangjin LIAO, et al. Research on 5G base station energy saving system based on DCNN-LSTM load prediction algorithm[J]. Telecommunications science, 2023, 39(4): 133-141.
王建斌, 王淑春, 廖尚金, 等. 基于DCNN-LSTM负荷预测算法的5G基站节能系统研究[J]. 电信科学, 2023,39(4):133-141. DOI: 10.11959/j.issn.1000-0801.2023101.
Jianbin WANG, Shuchun WANG, Shangjin LIAO, et al. Research on 5G base station energy saving system based on DCNN-LSTM load prediction algorithm[J]. Telecommunications science, 2023, 39(4): 133-141. DOI: 10.11959/j.issn.1000-0801.2023101.
伴随着5G网络的大规模快速建设,运营商乃至整体通信行业的能耗压力在同步凸显。通过节能降耗实现行业可持续发展成为当前5G网络发展的新研究方向。以小区物理资源块(physical resource block,PRB)利用率为负荷评估指标,对小区指标进行深度特征提取,提出了一套深度卷积神经网络和长短期记忆(DCNN-LSTM)深度学习算法模型实现PRB利用率未来值预测,进一步结合小区瞬时任务中大小包比例,对各种基站设定动态化的节能策略。并引入网络能耗管理网元,对整体5G接入网络的能耗进行动态化统一管理,在保障无线网络服务质量的基础上,实现了5G基站的智能化节能运作。
With the rapid construction of the 5G wireless communication network
the energy consumption pressure of operators
and even the overall communication industry
is simultaneously highlighted.Achieving sustainable development of the industry through energy conservation and consumption reduction has become a new research direction for the current 5G network development.Taking the PRB rate as the load evaluation index
LSTM model was improved by using DCNN to extract the depth feature of the cell’s indicators.A set of DCNN-LSTM deep learning model that could predict the future value of PRB rate was proposed.On the basis of the improved algorithm
the network topology of the current 5G access network was optimized.An additional network element and its working system were designed.An intelligent energy-saving system
which ensured the network experience
of 5G base stations was realized.
华为技术有限公司 . 5G 时代运营商数据和存储架构白皮书 [R ] . 2020 .
Huawei Technologies Co.,Ltd . White paper on operater data and storage architecture in 5G era [R ] . 2020 .
赛迪顾问 . 5G 产业发展白皮书(2020) [R ] . 2020 .
CCID Consulting . 5G industry development white paper (2020) [R ] . 2020 .
张化 , 李鹏 , 鲁娜 , 等 . 5G 基站节能技术性能评估研究 [J ] . 电子技术应用 , 2020 , 46 ( 10 ): 2024 .
ZHANG H , LI P , LU N , et al . Study of performance evaluation on energy saving for 5G base station [J ] . Application of Electronic Technique , 2020 , 46 ( 10 ): 2024 .
谢泽铖 , 徐雷 , 张曼君 , 等 . 5G 网络共建共享安全研究 [J ] . 邮电设计技术 , 2021 ( 4 ): 5 - 9 .
XIE Z C , XU L , ZHANG M J , et al . Research on security of 5G network co-construction and sharing [J ] . Designing Techniques of Posts and Telecommunications . 2021 ( 4 ): 5 - 9 .
WU Q Q , LI G Y , CHEN W , et al . An overview of sustainable green 5G networks [J ] . IEEE Wireless Communications , 2017 , 24 ( 4 ): 72 - 80 .
LORINCZ J , CAPONE A , WU J S . Greener,energy-efficient and sustainable networks:state-of-the-art and new trends [J ] . Sensors , 2019 , 19 ( 22 ): E4864 .
官磊 , 丁洋 , 李锐杰 , 等 . 面向“双碳”的5G网络节能技术 [J ] . 电信科学 , 2022 , 38 ( 4 ): 8 .
GUAN L , DING Y , LI R J , et al . Network energy saving technologies for green 5G [J ] . Telecommunications Science , 2022 , 38 ( 4 ): 8 .
徐孟强 . 基于AI深度学习的面向业务5G基站节能系统研究 [J ] . 电信科学 , 2021 , 37 ( 11 ): 9 .
XU M Q . Research on business oriented 5G base station energy saving system based on AI deep learning [J ] . Telecommunications Science , 2021 , 37 ( 11 ): 9 .
BARB G , ANDRAS C , BALINT C . Performance analysis of transport layer congestion on 5G systems [C ] // Proceedings of 2022 14th International Conference on Communications (COMM) .[S.l.:s.n. ] , 2022 : 1 - 4 .
KALCHBRENNER N , GREFENSTETTE E , BLUNSOM P . A convolutional neural network for modelling sentences [J ] . arXiv preprint , 2014 .arXiv:1404.2188.
GRAVES A , MOHAMED A , HINTON G . Speech recognition with deep recurrent neural networks [C ] // Proceedings of the 2013 IEEE international Conference on Acoustics,Speechand Signal Processing . Piscataway:IEEE Press , 2013 : 6645 - 6649 .
KINGMA D P , BA J . Adam:A method for stochastic optimization [J ] . arXiv preprint , 2014 ,arXiv:1412.6980.
BAI Y , YANG E , HAN B , et al . Understanding and improving early stopping for learning with noisy labels [J ] . Advances in Neural Information processing Systems , 2021 ( 34 ): 24392 - 24403 .
HAN X Y , PAPYAN V , DONOHO D L . Neural collapse under MSE loss:proximity to and dynamics on the central path [J ] . arXiv preprint , 2021 ,arXiv:2106.02073.
DATAESATU A , BOONSRIMUANG P , MORI P , et al . Energy efficiency enhancement in 5G heterogeneous cellular networks using system throughput based sleep control scheme [C ] // Proceedings of 2020 22nd International Conference on Advanced Communication Technology (ICACT) .[S.l.:s.n. ] , 2020 : 549 - 553 .
0
浏览量
514
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构