浏览全部资源
扫码关注微信
1. 西安电子科技大学,陕西 西安 710126
2. 中国电信股份有限公司广州分公司,广东 广州 510620
3. 马晓亮劳模与工匠人才创新工作室,广东 广州 510620
[ "马晓亮(1973- ),男,西安电子科技大学博士生,中国电信股份有限公司广州分公司副总经理、正高级工程师,马晓亮劳模与工匠人才创新工作室总负责人。主要从事数据通信、互联网运营、数据挖掘、商呼和运营商客服等工作,主要研究方向为人工智能、自然语言处理和数据安全保护等" ]
[ "刘英(1979- ),男,中国电信股份有限公司广州分公司客户服务部团队总监,马晓亮劳模与工匠人才创新工作室成员,主要研究方向为智能客服平台组件、自然语言处理等" ]
[ "杜德泉(1983- ),男,中国电信股份有限公司广州分公司客户服务部团队总监,马晓亮劳模与工匠人才创新工作室成员,主要研究方向为信息安全、运营商客服运营、自然语言处理等" ]
[ "安玲玲(1978- ),女,博士,西安电子科技大学教授、博士生导师,主要研究方向为多媒体处理、神经计算、机器学习等" ]
网络出版日期:2023-05,
纸质出版日期:2023-05-20
移动端阅览
马晓亮, 刘英, 杜德泉, 等. 运营商智能客服的关键技术和发展趋势[J]. 电信科学, 2023,39(5):76-89.
Xiaoliang MA, Ying LIU, Dequan DU, et al. Key technologies and development trends of intelligent customer service for operators[J]. Telecommunications science, 2023, 39(5): 76-89.
马晓亮, 刘英, 杜德泉, 等. 运营商智能客服的关键技术和发展趋势[J]. 电信科学, 2023,39(5):76-89. DOI: 10.11959/j.issn.1000-0801.2023110.
Xiaoliang MA, Ying LIU, Dequan DU, et al. Key technologies and development trends of intelligent customer service for operators[J]. Telecommunications science, 2023, 39(5): 76-89. DOI: 10.11959/j.issn.1000-0801.2023110.
探讨了运营商智能客服的技术发展趋势,介绍了自动语音识别(automatic speech recognition,ASR)转写纠错技术、语义提取技术、加密数据库以及坐席访问控制等技术。分析了语音识别的错误检测和自动纠错两种不同的研究方向;在语义理解方面分析了小样本训练下的有监督学习和无监督的关键词提取;介绍了大数据加密和坐席访问控制技术。同时,展望了多模态交互技术、智能推荐技术和面向残疾人服务等技术方向。总之,智能客服技术的发展与创新将为通信行业带来更高效、便捷的服务体验,推动行业服务水平的进步。
The technology development trend of intelligent customer service for operators was discussed
and automatic speech recognition (ASR) transcription error correction technology
semantic extraction technology
encrypted database
and agent access control technology were introduced.Two different research directions of error detection and automatic error correction for speech recognition were analyzed
two directions of supervised learning and unsupervised learning were discussed
and big data encryption and agent access control technologies were introduced.At the same time
the technical directions of multimodal interaction technology
intelligent recommendation technology and disabled-oriented services were prospected.In conclusion
the development and innovation of intelligent customer service technology will bring a more efficient and convenient service experience to the communication industry and strongly promote the progress of the industry service level.
朱敏 , 张丹丹 . 基于人工智能的电信运营商智慧客服系统探讨 [J ] . 信息技术与信息化 , 2019 ( 7 ): 153 - 155 .
ZHU M , ZHANG D D . Discussion on intelligent customer service system of telecom operators based on artificial intelligence [J ] . Information Technology & Informatization , 2019 ( 7 ): 153 - 155 .
蒋竺芳 . 端到端自动语音识别技术研究 [D ] . 北京:北京邮电大学 , 2019 .
JIANG Z F . Research on end-to-end automatic speech recognition technology [D ] . Beijing:Beijing University of Posts and Telecommunications , 2019 .
章成志 . 自动标引研究的回顾与展望 [J ] . 现代图书情报技术 , 2007 ( 11 ): 33 - 39 .
ZHANG C Z . Review and prospect of automatic indexing research [J ] . New Technology of Library and Information Service , 2007 ( 11 ): 33 - 39 .
DAVIS K H , BIDDULPH R , BALASHEK S . Automatic recognition of spoken digits [J ] . The Journal of the Acoustical Society of America , 1952 , 24 ( 6 ): 637 - 642 .
LEE K F , HON H W , REDDY R . An overview of the SPHINX speech recognition system [J ] . IEEE Transactions on Acoustics,Speech,and Signal Processing , 1990 , 38 ( 1 ): 35 - 45 .
WILPON J G , RABINER L R . Application of hidden Markov models to automatic speech endpoint detection [J ] . Computer Speech & Language , 1987 , 2 ( 3/4 ): 321 - 341 .
YOUNG S , EVERMANN G , GALES M , et al . The HTK book [EB ] . 2005 .
HINTON G E , OSINDERO S , TEH Y W . A fast learning algorithm for deep belief nets [J ] . Neural Computation , 2006 , 18 ( 7 ): 1527 - 1554 .
MOHAMED A R , YU D , DENG L . Investigation of full-sequence training of deep belief networks for speech recognition [C ] // Proceedings of Eleventh Annual Conference of the International Speech Communication Association . ISCA:ISCA , 2010 .
HINTON G , DENG L , YU D , et al . Deep neural networks for acoustic modeling in speech recognition:the shared views of four research groups [J ] . IEEE Signal Processing Magazine , 2012 , 29 ( 6 ): 82 - 97 .
俞栋 , 邓力 . 解析深度学习:语音识别实践 [M ] . 俞凯,钱彦旻,等译 . 北京 : 电子工业出版社 , 2016 .
YU D , DENG L . Analytic deep learning:speech recognition in practice [M ] . Translated by YU K,QIAN Y M,et al . Beijing : Publishing House of Electronics Industry , 2016 .
KHAN S , BASU J , PAL M , et al . Multilingual conversational telephony speech corpus creation for real world speaker diarization and recognition [C ] // Proceedings of 2016 Conference of The Oriental Chapter of International Committee for Coordination and Standardization of Speech Databases and Assessment Techniques (O-COCOSDA) . Piscataway:IEEE Press , 2016 : 177 - 182 .
BAHDANAU D , CHO K , BENGIO Y . Neural machine translation by jointly learning to align and translate" [C ] // Proceedings of 3rd International Conference on Learning Representations,ICLR 2015.2015:arXiv:1409.0473v6 . 2015 .
CHIU C C , SAINATH T N , WU Y , et al . State-of-the-art speech recognition with sequence-to-sequence models [C ] // Proceedings of International Conference on Acoustics,Speech and Signal Processing,ICASSP 2018 . Piscataway:IEEE Press , 2018 .
ZHANG W D , ZHANG F , CHEN W , et al . Fault state recognition of rolling bearing based fully convolutional network [J ] . Computing in Science & Engineering , 2019 , 21 ( 5 ): 55 - 63 .
ZHANG S L , LEI M , YAN Z J , et al . Deep-FSMN for large vocabulary continuous speech recognition [C ] // Proceedings of 2018 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP) . Calgary:IEEE , 2018 : 5869 - 5873 .
张琳涵 . 面向转录文本的语音识别错误检测和纠正方法研究 [D ] . 哈尔滨:哈尔滨工业大学 , 2020 .
ZHANG L H . Research on error detection and correction method of speech recognition for transcribed text [D ] . Harbin:Harbin Institute of Technology , 2020 .
ZHOU L N , SHI Y M , FENG J J , et al . Data mining for detecting errors in dictation speech recognition [J ] . IEEE Transactions on Speech and Audio Processing , 2005 , 13 ( 5 ): 681 - 688 .
MERIPO N V , KONAM S . ASR error detection via audio-transcript entailment [C ] // Proceedings of Interspeech 2022 ,[S.l.:s.n. ] , 2022 .
AINSWORTH W A , PRATT S R . Feedback strategies for error correction in speech recognition systems [J ] . International Journal of Man-Machine Studies , 1992 , 36 ( 6 ): 833 - 842 .
SUHM B , MYERS B , WAIBEL A . Multimodal error correction for speech user interfaces [J ] . ACM Transactions on Computer-Human Interaction , 2001 , 8 ( 1 ): 60 - 98 .
王兴建 . 语音识别后文本处理系统中文本语音信息评价算法研究 [D ] . 北京:北京邮电大学 , 2010 .
WANG X J . Research on evaluation algorithm of text speech information in text processing system after speech recognition [D ] . Beijing:Beijing University of Posts and Telecommunications , 2010 .
张佳宁 , 严冬梅 , 王勇 . 基于word2vec的语音识别后文本纠错 [J ] . 计算机工程与设计 , 2020 , 41 ( 11 ): 3235 - 3240 .
ZHANG J N , YAN D M , WANG Y . Text correction based on word2vec speech recognition [J ] . Computer Engineering and Design , 2020 , 41 ( 11 ): 3235 - 3240 .
马文晖 , 冯国斌 , 刘为民 , 等 . 语音识别后文本纠检错算法研究 [J ] . 铁道通信信号 , 2020 , 56 ( 11 ): 55 - 58 .
MA W H , FENG G B , LIU W M , et al . Research on text error correction and detection algorithm after speech recognition [J ] . Railway Signalling & Communication , 2020 , 56 ( 11 ): 55 - 58 .
黄大吉 , 林海香 . 基于嵌入式NLP的铁路车务术语语音识别方法 [J ] . 兰州交通大学学报 , 2020 , 39 ( 5 ): 64 - 69 , 75 .
HUANG D J , LIN H X . Railway traffic term speech recognition method based on embedded NLP [J ] . Journal of Lanzhou Jiaotong University , 2020 , 39 ( 5 ): 64 - 69 , 75 .
赵京胜 , 朱巧明 , 周国栋 , 等 . 自动关键词抽取研究综述 [J ] . 软件学报 , 2017 , 28 ( 9 ): 2431 - 2449 .
ZHAO J S , ZHU Q M , ZHOU G D , et al . Review of research in automatic keyword extraction [J ] . Journal of Software , 2017 , 28 ( 9 ): 2431 - 2449 .
LUHN H P . A statistical approach to mechanized encoding and searching of literary information [J ] . IBM Journal of Research and Development , 1957 , 1 ( 4 ): 309 - 317 .
LIU Z Y , LI P , ZHENG Y B , et al . Clustering to find exemplar terms for keyphrase extraction [C ] // Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing:Volume 1 - Volume 1 . New York:ACM Press , 2009 : 257 - 266 .
LIU Z Y , HUANG W Y , ZHENG Y B , et al . Automatic keyphrase extraction via topic decomposition [C ] // Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing . New York:ACM Press , 2010 : 366 - 376 .
CHANG Y C , ZHANG Y X , WANG H , et al . Features oriented survey of state-of-the-art keyphrase extraction algorithms [J ] . Journal of Software , 2018 , 29 ( 7 ): 2046 - 2070
毛立琦 , 石拓 , 吴林 , 等 . 基于领域自适应的无监督文本关键词提取模型:以“人工智能风险”领域文本为例 [J ] . 情报理论与实践 , 2022 , 45 ( 3 ): 182 - 187 .
MAO L Q , SHI T , WU L , et al . Unsupervised text keyword extraction model based on domain adaptation:take the “artificial intelligence risk” field text as an example [J ] . Information Studies (Theory & Application) , 2022 , 45 ( 3 ): 182 - 187 .
胡少虎 , 张颖怡 , 章成志 . 关键词提取研究综述 [J ] . 数据分析与知识发现 , 2020 ( 3 ): 45 - 59 .
HU S H , ZHANG Y Y , ZHANG C Z . Review of keyword extraction studies [J ] . Data Analysis and Knowledge Discovery , 2020 ( 3 ): 45 - 59 .
FRANK E , PAYNTER G W , WITTEN I H , et al . Domain-specific keyphrase extraction [C ] // Proceedings of the 16th international joint conference on Artificial intelligence - Volume 2 . New York:ACM Press , 1999 : 668 - 673 .
WANG J B , PENG H . Keyphrases extraction from Web document by the least squares support vector machine [C ] // Proceedings of 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI'05) . Piscataway:IEEE Press , 2005 : 293 - 296 .
ERCAN G , CICEKLI I . Using lexical chains for keyword extraction [J ] . Information Processing & Management , 2007 , 43 ( 6 ): 1705 - 1714 .
ZHANG C , WANG H , LIU Y , et al . Automatic keyword extraction from documents using conditional random fields [J ] . Journal of Computer Information Systems , 2008 , 4 ( 3 ): 1169 - 1180 .
ZHANG Q , WANG Y , GONG Y Y , et al . Keyphrase extraction using deep recurrent neural networks on twitter [C ] // Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing . Stroudsburg,PA,USA:Association for Computational Linguistics , 2016 : 836 - 845 .
MENG R , ZHAO S Q , HAN S G , et al . Deep keyphrase generation [C ] // Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers) . Stroudsburg,PA,USA:Association for Computational Linguistics , 2017 : 582 - 592 .
CHEN J , ZHANG X M , WU Y , et al . Keyphrase generation with correlation constraints [C ] // Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing . Stroudsburg,PA,USA:Association for Computational Linguistics , 2018 : 4057 - 4066 .
ALZAIDY R , CARAGEA C , GILES C L . Bi-LSTM-CRF sequence labeling for keyphrase extraction from scholarly documents [C ] // Proceedings of WWW '19:The World Wide Web Conference . New York:ACM Press , 2019 : 2551 - 2557 .
CHEN W , GAO Y , ZHANG J , et al . Title-guided encoding for keyphrasegeneration [C ] // Proceedings of the 33rd AAAI Conference on Artificial Intelligence . Palo Alto:AAAI Press , 2019 : 6268 - 6275 .
马莉媛 , 黄勃 , 朱良奇 , 等 . 基于LightGBM的文本关键词提取方法 [J ] . 软件导刊 , 2021 , 20 ( 7 ): 18 - 22 .
MA L Y , HUANG B , ZHU L Q , et al . A text keyword extraction method based on LightGBM [J ] . Software Guide , 2021 , 20 ( 7 ): 18 - 22 .
潘慧萍 , 李宝安 , 张乐 , 等 . 基于多特征融合的政府工作报告关键词提取研究 [J ] . 数据分析与知识发现 , 2022 , 6 ( 5 ): 54 - 63 .
PAN H P , LI B A , ZHANG L , et al . Extracting keywords from government work reports with multi-feature fusion [J ] . Data Analysis and Knowledge Discovery , 2022 , 6 ( 5 ): 54 - 63 .
卢啸岩 , 郑宇 , 昝欣 . 基于 BERT-BiLSTM-TFIDF 的产品研发文档关键词提取方法 [J ] . 工业工程与管理 , 2022 : 1 - 13 .
LU X Y , ZHENG Y , ZAN X . Keywords extraction method of product development documents based on BERT-BiL STM-TFIDF [J ] . Industrial Engineering and Management , 2022 : 1 - 13 .
何传鹏 , 尹玲 , 黄勃 , 等 . 基于BERT和LightGBM的文本关键词提取方法 [J ] . 电子科技 , 2023 , 36 ( 3 ): 7 - 13 .
HE C P , YIN L , HUANG B , et al . Text keyword extraction method based on BERT and LightGBM [J ] . Electronic Science and Technology , 2023 , 36 ( 3 ): 7 - 13 .
SAHAI A , WATERS B . Fuzzy identity-based encryption [M ] // Lecture Notes in Computer Science . Heidelberg : Springer , 2004 : 457 - 473 .
BETHENCOURT J , SAHAI A , WATERS B . Ciphertext-policy attribute-based encryption [C ] // Proceedings of 2007 IEEE Symposium on Security and Privacy (SP '07) . Piscataway:IEEE Press , 2007 : 321 - 334 .
GREEN M , HOHENBERGER S , WATERS B . Outsourcing the decryption of ABE ciphertexts [C ] // Proceedings of the 20th USENIX Conference on Security . New York:ACM Press , 2011 :34.
丁文倩 . 基于属性加密的云数据安全共享算法研究 [D ] . 杭州:杭州电子科技大学 , 2022 .
DING W Q . Research on cloud data security sharing algorithm based on attribute encryption [D ] . Hangzhou:Hangzhou Dianzi University , 2022 .
BLAZE M , BLEUMER G , STRAUSS M . Divertible protocols and atomic proxy cryptography [M ] // Lecture Notes in Computer Science . Heidelberg : Springer , 1998 : 127 - 144 .
GREEN M , ATENIESE G . Identity-based proxy re-encryption [R ] . Lecture Notes in Computer Science 4521.Heidelberg:Springer , 2007 : 288 - 306 .
WENG J , DENG R H , DING X H , et al . Conditional proxy re-encryption secure against chosen-ciphertext attack [C ] // Proceedings of the 4th International Symposium on Information,Computer,and Communications Security . New York:ACM Press , 2009 : 322 - 332 .
薛庆水 , 孙晨曦 , 马海峰 , 等 . 基于条件代理重加密的跨链数据共享方案 [J ] . 计算机应用研究 , 2022 , 40 ( 3 ).
XUE Q S , SUN C X , MA H F , et al . Cross-chain data sharing scheme based on conditional proxy reencryption [J ] . Computer application research , 2022 , 40 ( 3 ).
GENTRY C , . Fully homomorphic encryption using ideal lattices [C ] // Proceedings of the forty-first annual ACM symposium on Theory of computing . New York:ACM Press , 2009 : 169 - 178 .
GENTRY C , . Toward basing fully homomorphic encryption on worst-case hardness [C ] // Proceedings of Annual Cryptology Conference . Heidelberg:Springer , 2010 : 116 - 137 .
CHEON J H , CORON J S , KIM J , et al . Batch fully homomorphic encryption over the integers [C ] // Advances in Cryptology –EUROCRYPT 2013 . Heidelberg:Springer , 2013 : 315 - 335 .
SANDHU R S , COYNE E J , FEINSTEIN H L , et al . Rolebased access control models [J ] . Computer , 1996 , 29 ( 2 ): 38 - 47 .
RAY I , KUMAR M , YU L . LRBAC:a location-aware role-based access control model [C ] // Proceeding so fthe 2nd International Conference on Information Systems Security . Heidelberg:Springer , 2006 : 147 - 161 .
WU Z J , YOU Z H , WANG P . Attribute encryption based access control methods under airborne networks [C ] // Proceedings of 2022 IEEE International Conference on Parallel & Distributed Processing with Applications,Big Data & Cloud Computing,Sustainable Computing & Communications,Social Computing& Networking . Piscataway:IEEE Press , 2022 .
SUN G Z , DONG Y , LI Y . CP-ABE based data access control for cloud storage [J ] . Journal on Communications , 2011 , 32 ( 7 ): 146 - 152 .
LIANG X H , CAO Z F , LIN H , et al . Attribute based proxy re-encryption with delegating capabilities [C ] // Proceedings of the 4th International Symposium on Information,Computer and Communications Security (ASIACCS) . New York:ACM Press , 2009 : 276 - 286 .
YU S C , WANG C , REN K , et al . Achieving secure,scalable,and fine-grained data access control in cloud computing [C ] // Proceedings of IEEE INFOCOM 2010 . Piscataway:IEEE Press , 2010 : 1 - 9 .
YANG K , JIA X H . Attribute-based access control for multi-authority systems in cloud storage [C ] // Proceedings of the 32nd International Conference on Distributed Computing Systems . Piscataway:IEEE Press , 2012 : 536 - 545 .
许振武 . 云环境中基于改进的代理重加密的细粒度访问策略 [D ] . 恩施:湖北民族大学 , 2022 .
XU Z W . Fine-grained access strategy based on improved proxy re-encryption in cloud environment [D ] . Enshi:Hubei Minzu University , 2022 .
周晶 , 孙喜民 , 于晓昆 , 等 . 知识图谱与数据应用——智能推荐 [J ] . 电信科学 , 2019 , 35 ( 8 ): 165 - 172 .
ZHOU J , SUN X M , YU X K , et al . Knowledge graph and data application--intelligent recommendation [J ] . Telecommunications Science , 2019 , 35 ( 8 ): 165 - 172 .
0
浏览量
552
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构