浏览全部资源
扫码关注微信
1. 江西理工大学理学院,江西 赣州 341000
2. 浙江省医学电子与数字健康重点实验室,浙江 嘉兴 314001
[ "卢敏(1964- ),男,江西理工大学教授,主要研究方向为深度学习和智能通信、电子材料和设备" ]
[ "胡娟(1997- ),女,江西理工大学硕士生,主要研究方向为深度学习和智能通信" ]
[ "张先超(1984- ),男,博士,浙江省医学电子与数字健康重点实验室研究员,主要研究方向为无线网络资源管理、人工智能等" ]
[ "丁伟健(1993- ),男,江西理工大学硕士生,主要研究方向为深度学习和智能通信" ]
[ "乐光学(1963- ),男,博士,嘉兴学院信息科学与工程学院、浙江省医学电子与数字健康重点实验室教授,主要研究方向为多云融合与协同服务、边缘计算、深度学习、智能通信等" ]
网络出版日期:2023-05,
纸质出版日期:2023-05-20
移动端阅览
卢敏, 胡娟, 张先超, 等. 基于用户多特征融合的个性化推荐模型[J]. 电信科学, 2023,39(5):101-115.
Min LU, Juan HU, Xianchao ZHANG, et al. Personalized recommendation model based on users multi-features fusion[J]. Telecommunications science, 2023, 39(5): 101-115.
卢敏, 胡娟, 张先超, 等. 基于用户多特征融合的个性化推荐模型[J]. 电信科学, 2023,39(5):101-115. DOI: 10.11959/j.issn.1000-0801.2023111.
Min LU, Juan HU, Xianchao ZHANG, et al. Personalized recommendation model based on users multi-features fusion[J]. Telecommunications science, 2023, 39(5): 101-115. DOI: 10.11959/j.issn.1000-0801.2023111.
个性化推荐是提取特定信息的有效手段之一,针对传统推荐法中缺少用户特征问题,提出一种基于多特征融合的广义矩阵分解与深度长短期记忆网络混合推荐模型(hybrid recommendation model of generalized matrix factorization and deep long short-term memory network based on multi-features fusion,HMF)。该模型利用潜在特征向量维度表征年龄、职业对项目的选择性影响,凸显用户个性化;利用长短期记忆(long short-term memory,LSTM)获取用户与项目间的时序特征,再通过多层感知机挖掘其深层次的时序非线性高阶交互关系;将广义矩阵分解(generalized matrix factorization,GMF)获得的简单非线性低阶交互关系与复杂时序非线性高阶交互关系融合,经全连接层得出最终预测评分。HMF有效地利用用户多特征和用户—项目交互信息,实现个性化动态精准推荐。为验证模型的有效性和可行性,在公开数据集MovieLens-1M上进行测试。仿真实验表明,当HMF的潜在特征向量维度为50、MLP层数为7时,HR@10和NDCG@10分别为0.983 1、0.974 9,相比传统单特征模型NCF最优解分别提高了27.61%、54.29%。
Personalized recommendation is one of the most effective means to extract specific information.Aiming at the problem that lacking of users feature in traditional recommendation methods
a hybrid recommendation model of generalized matrix factorization and deep long short-term memory network based on multi-features fusion (HMF) was proposed.The model used potential eigenvector factors to characterize the selective impact of age and occupation on the project
highlighting user personalization.Long short-term memory (LSTM) was used to obtain the temporal characteristics between users and projects
and then the deep temporal nonlinear higher-order interaction relationship was mined by multi-layer perceptron.The simple nonlinear low-order interaction obtained by generalized matrix factorization (GMF) was fused with the complex time-series nonlinear high-order interaction
and the final prediction score was obtained through the full connection layer.HMF effectively utilized the user’s multi-feature and user-project interaction information to realize personalized dynamic and accurate recommendation.In order to verify the validity and feasibility of the model
the test was conducted on the public dataset MovieLens-1M.The simulation experiment shows that when the potential eigenvector factors of HMF is 50 and the MLP layer is 7
HR@10 and NDCG@10 are 0.983 1 and 0.974 9 respectively
which are 27.61% and 54.29% higher than the optimal solution of the traditional single feature model NCF.
LIN Y . A neural network-based approach to personalized recommendation of digital resources [J ] . Computer Informatization and Mechanical System , 2022 , 5 ( 4 ).
NAN X , KANATO K , WANG X L . Design and implementation of a personalized tourism recommendation system based on the data mining and collaborative filtering algorithm [J ] . Computational Intelligence and Neuroscience , 2022 :1424097.
ZHAN Z , XU B G . Analyzing review sentiments and product images by parallel deep nets for personalized recommendation [J ] . Information Processing & Management , 2023 , 60 ( 1 ): 103166 .
HUANG Y , GADDE R S K , LOPES S , et al . Improving occupant thermal comfort through personalized space recommendation [J ] . Journal of Computing in Civil Engineering , 2023 , 37 ( 1 ): 04022053 .
PANG N . A personalized recommendation algorithm for semantic classification of new book recommendation services for university libraries [J ] . Mathematical Problems in Engineering , 2022 : 1 - 8 .
AFOUDI Y , LAZAAR M , ACHHAB M A . Hybrid recommendation system combined content-based filtering and collaborative prediction using artificial neural network [J ] . Simulation Modelling Practice and Theory , 2021 ( 113 ): 102375 .
HE X N , LIAO L Z , ZHANG H W , et al . Neural collaborative filtering [C ] // Proceedings of the 26th International Conference on World Wide Web . New York:ACM Press , 2017 : 173 - 182 .
DO P M T , NGUYEN T T S . Semantic-enhanced neural collaborative filtering models in recommender systems [J ] . Knowledge-Based Systems , 2022 ( 257 ): 109934 .
RENDLE S . Factorization machines with libFM [J ] . ACM Transactions on Intelligent Systems and Technology , 2012 , 3 ( 3 ): 1 - 22 .
SINGH R K , SINGH P K , SINGH J P , et al . Utilizing alike neighbor influenced similarity metric for efficient prediction in collaborative filter-approach-based recommendation system [J ] . Applied Sciences , 2022 , 12 ( 22 ): 11686 .
WANG Y , ZHAO X H , ZHANG Z Q , et al . A collaborative filtering algorithm based on item labels and Hellinger distance for sparse data [J ] . Journal of Information Science , 2022 , 48 ( 6 ): 749 - 766 .
DUAN R , JIANG C Q , JAIN H K . Combining review-based collaborative filtering and matrix factorization:a solution to rating’s sparsity problem [J ] . Decision Support Systems , 2022 ( 156 ): 113748 .
SEJWAL V K , ABULAISH M , JAHIRUDDIN . CRecSys:a context-based recommender system using collaborative filtering and LOD [J ] . IEEE Access , 2020 ( 8 ): 158432 - 158448 .
NGUYEN S T , KWAK H Y , LEE S Y , et al . Featured hybrid recommendation system using stochastic gradient descent [J ] . International Journal of Networked and Distributed Computing , 2021 , 9 ( 1 ): 25 .
KIM D , PARK C , OH J , et al . Convolutional matrix factorization for document context-aware recommendation [C ] // Proceedings of the 10th ACM Conference on Recommender Systems . New York:ACM Press , 2016 : 233 - 240 .
田震 , 潘腊梅 , 尹朴 , 等 . 深度矩阵分解推荐算法 [J ] . 软件学报 , 2021 , 32 ( 12 ): 3917 - 3928 .
TIAN Z , PAN L M , YIN P , et al . Deep matrix factorization recommendation algorithm [J ] . Journal of Software , 2021 , 32 ( 12 ): 3917 - 3928 .
王骏 , 虞歌 . 基于改进神经协同过滤模型的电影推荐系统 [J ] . 计算机工程与设计 , 2020 , 41 ( 7 ): 2069 - 2075 .
WANG J , YU G . Movie recommendation system based on improved neural collaborative filtering model [J ] . Computer Engineering and Design , 2020 , 41 ( 7 ): 2069 - 2075 .
李浩 , 张亚钏 , 康雁 , 等 . 融合循环知识图谱和协同过滤电影推荐算法 [J ] . 计算机工程与应用 , 2020 , 56 ( 2 ): 106 - 114 .
LI H , ZHANG Y C , KANG Y , et al . Fusion recurrent knowledge graph and collaborative filtering movie recommendation algorithm [J ] . Computer Engineering and Applications , 2020 , 56 ( 2 ): 106 - 114 .
高茂庭 , 徐彬源 . 基于循环神经网络的推荐算法 [J ] . 计算机工程 , 2019 , 45 ( 8 ): 198 - 202 , 209 .
GAO M T , XU B Y . Recommendation algorithm based on recurrent neural network [J ] . Computer Engineering , 2019 , 45 ( 8 ): 198 - 202 , 209 .
李利杰 , 张君华 . 基于循环神经网络和全局化领域的推荐算法 [J ] . 计算机与数字工程 , 2022 , 50 ( 8 ): 1676 - 1679 , 1701 .
LI L J , ZHANG J H . Recommendation algorithm based on recurrent neural network and global domain [J ] . Computer and Digital Engineering , 2022 , 50 ( 8 ): 1676 - 1679 , 1701 .
田晓婧 , 谢颖华 . 融合长短期记忆网络与广义矩阵分解的神经协同过滤模型 [J ] . 计算机系统应用 , 2022 , 31 ( 1 ): 190 - 194 .
TIAN X J , XIE Y H . Neural collaborative filtering model integrating LSTM and generalized matrix factorization [J ] . Computer Systems & Applications , 2022 , 31 ( 1 ): 190 - 194 .
KIRAN R , KUMAR P , BHASKER B . DNNRec:a novel deep learning based hybrid recommender system [J ] . Expert Systems With Applications , 2020 ( 144 ): 113054 .
TANG X L , WANG T Y , YANG H Z , et al . AKUPM:attention-enhanced knowledge-aware user preference model for recommendation [C ] // Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining . New York:ACM Press , 2019 : 1891 - 1899 .
秦川 , 祝恒书 , 庄福振 , 等 . 基于知识图谱的推荐系统研究综述 [J ] . 中国科学:信息科学 , 2020 , 50 ( 7 ): 937 - 956 .
QIN C , ZHU H S , ZHUANG F Z , et al . A survey on knowledge graph-based recommender systems [J ] . SCIENTIA SINICA Informationis , 2020 , 50 ( 7 ): 937 - 956 .
WANG H W , ZHANG F Z , WANG J L , et al . RippleNet:propagating user preferences on the knowledge graph for recommender systems [C ] // Proceedings of the 27th ACM International Conference on Information and Knowledge Management . New York:ACM Press , 2018 : 417 - 426 .
MA M , CAO Q , LIU X Y . A graph convolution collaborative filtering integrating social relations recommendation method [J ] . Applied Sciences , 2022 , 12 ( 22 ): 11653 .
BAYER I , HE X N , KANAGAL B , et al . A generic coordinate descent framework for learning from implicit feedback [C ] // Proceedings of the 26th International Conference on World Wide Web . New York:ACM Press , 2017 : 1341 - 1350 .
WAKITA Y , OKU K , KAWAGOE K . Toward fashion-brand recommendation systems using deep-learning:preliminary analysis [J ] . International Journal of Knowledge Engineering , 2016 , 2 ( 3 ): 128 - 131 .
HE X N , CHEN T , KAN M Y , et al . TriRank:review-aware explainable recommendation by modeling aspects [C ] // Proceedings of the 24th ACM International on Conference on Information and Knowledge Management . New York:ACM Press , 2015 : 1661 - 1670 .
0
浏览量
442
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构