浏览全部资源
扫码关注微信
1. 中国电信股份有限公司四川分公司,四川 成都 610031
2. 西南交通大学交通运输与物流学院,四川 成都 611756
[ "郑成渝(1968- ),男,中国电信股份有限公司四川分公司党委书记、总经理、高级工程师,主要研究方向为计算机IT系统架构、移动通信网络等" ]
[ "姚依婷(1995- ),女,西南交通大学博士生,主要研究方向为智能交通、无线网络、人工智能和车联网资源优化与配置" ]
[ "梁宏斌(1972- ),男,博士,西南交通大学教授、博士生导师,主要研究方向为无线通信技术、车联网、智能交通与物流以及信息安全等" ]
[ "王磊(1995- ),男,西南交通大学博士生,主要研究方向为智能交通系统、人工智能和移动边缘计算" ]
网络出版日期:2023-07,
纸质出版日期:2023-07-20
移动端阅览
郑成渝, 姚依婷, 梁宏斌, 等. 5G车联网资源优化分配方案综述[J]. 电信科学, 2023,39(7):124-138.
Chengyu ZHENG, Yiting YAO, Hongbin LIANG, et al. Review of optimal resource allocation scheme for 5G Internet of vehicles[J]. Telecommunications science, 2023, 39(7): 124-138.
郑成渝, 姚依婷, 梁宏斌, 等. 5G车联网资源优化分配方案综述[J]. 电信科学, 2023,39(7):124-138. DOI: 10.11959/j.issn.1000-0801.2023139.
Chengyu ZHENG, Yiting YAO, Hongbin LIANG, et al. Review of optimal resource allocation scheme for 5G Internet of vehicles[J]. Telecommunications science, 2023, 39(7): 124-138. DOI: 10.11959/j.issn.1000-0801.2023139.
车联网作为智慧交通发展的必要组成部分,可加快我国智慧交通基础建设,对于智慧城市建设具有重要的现实意义。汽车数量及其产生的海量数据使得通信车辆节点之间的传输冲突率大幅上升,导致通信资源、计算资源短缺等问题,因此,有效的资源分配方案可以保证车联网的通信质量,从而提高车辆通信的可靠性,降低时延。首先分析了国内外车联网对智慧交通发展现状的影响以及当前车联网发展瓶颈;然后针对智慧交通通行效率、安全性方面,分析了当前车联网的资源分配问题;接着通过总结5G技术的优点,分析了5G在车联网资源优化分配管理上的贡献;最后,在车联网通信、计算和存储资源优化分配管理的应用背景下,结合人工智能技术提出了基于5G+V2X的智慧交通发展前景。
As a necessary part of the development of intelligent transportation
the Internet of vehicles (IoV) accelerates the construction of intelligent transportation infrastructure in China
which plays an important practical significance to the construction of smart city.The number of vehicles and the massive data generated by them make the transmission conflict rate between communication vehicle nodes rise significantly
and communication resources and computing resources are in short supply.Therefore
the effective resource allocation scheme can ensure the communication quality of vehicle networking
thereby improving the reliability of vehicle communication and reducing the time delay.Firstly
the influence of IoV on the development status of intelligent transportation at home and abroad and the bottlenecks of the development of IoV were analyzed.Secondly
in terms of the efficiency and safety of smart transportation
the resource allocation problem of IoV was analyzed.Thirdly
by summarizing the advantages of 5G technology
the contribution of 5G in the optimization allocation and management of vehicle networking resources was analyzed.Finally
combined with the application of artificial intelligence technology in the context of Internet of vehicles communication
computing and storage resource optimization allocation and management
the development prospect of intelligent transportation based on 5G+V2X was proposed.
陈山枝 , 葛雨明 , 时岩 . 蜂窝车联网(C-V2X)技术发展、应用及展望 [J ] . 电信科学 , 2022 , 38 ( 1 ): 1 - 12 .
CHEN S Z , GE Y M , SHI Y . Technology development,application and prospect of cellular vehicle-to-everything (C-V2X) [J ] . Telecommunications Science , 2022 , 38 ( 1 ): 1 - 12 .
井骁 . 浅析车联网技术与应用 [J ] . 上海汽车 , 2019 ( 4 ): 9 - 12 .
JING X . Analysis on the technology and application of vehicle networking [J ] . Shanghai Auto , 2019 ( 4 ): 9 - 12 .
黄语骁 . 车联网网络安全技术研究 [J ] . 电子世界 , 2018 ( 19 ): 49 - 50 .
HUANG Y X . Research on network security technology of Internet of vehicles [J ] . Electronics World , 2018 ( 19 ): 49 - 50 .
WANG L L , GUI J S , DENG X H , et al . Routing algorithm based on vehicle position analysis for Internet of vehicles [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 12 ): 11701 - 11712 .
胡悦 . 基于车联网大数据的交通路况预测研究 [J ] . 长江信息通信 , 2022 ( 5 ): 141 - 144 .
HU Y . Research on traffic condition prediction based on big data of Internet of vehicles [J ] . Changjiang Information & Communications , 2022 ( 5 ): 141 - 144 .
YUE Q , JIANG K , LIU C J . Design of obstacle avoidance path planning system for intelligent vehicles based on Internet of things [C ] // Proceedings of 2021 International Conference of Social Computing and Digital Economy (ICSCDE) . Piscataway:IEEE Press , 2021 : 142 - 147 .
WANG W , XIA F , NIE H S , et al . Vehicle trajectory clustering based on dynamic representation learning of Internet of vehicles [J ] . IEEE Transactions on Intelligent Transportation Systems , 2021 , 22 ( 6 ): 3567 - 3576 .
马佳荣 , 李兰凤 , 张志恒 . 基于车联网的定位技术研究及展望 [J ] . 物联网技术 , 2021 , 11 ( 11 ): 4 - 6 .
MA J R , LI L F , ZHANG Z H . Research and prospect of positioning technology based on Internet of vehicles [J ] . Internet of Things Technologies , 2021 , 11 ( 11 ): 4 - 6 .
宁玉桥 , 赵浩 , 霍全瑞 , 等 . 车联网网络安全技术研究 [J ] . 汽车实用技术 , 2021 , 46 ( 24 ): 15 - 21 .
NING Y Q , ZHAO H , HUO Q R , et al . Research on cybersecurity technique of Internet of vehicles [J ] . Automobile Technology , 2021 , 46 ( 24 ): 15 - 21 .
翟冠杰 . 车联网体系结构分析及关键技术应用探讨 [J ] . 电子测试 , 2018 ( 23 ): 76 - 77 .
ZHAI G J . Analysis of vehicle networking architecture and application of key technologies [J ] . Electronic Test , 2018 ( 23 ): 76 - 77 .
李一兵 , 王宁馨 , 吕威 . 蜂窝车联网中基于服务异构性的V2V 通信资源分配算法研究 [J ] . 电子与信息学报 , 2023 , 45 ( 1 ): 235 - 242 .
LI Y B , WANG N X , LYU W . Research on resource allocation algorithm based on service heterogeneity in V2V communication in C-V2X [J ] . Journal of Electronics & Information Technology , 2023 , 45 ( 1 ): 235 - 242 .
黄澄 . 基于粒子群优化的毫米波通信网络资源分配算法 [J ] . 物联网技术 , 2019 , 9 ( 11 ): 33 - 35 , 38 .
HUANG C . Resource allocation algorithm of millimeter wave communication network based on particle swarm optimization [J ] . Internet of Things Technologies , 2019 , 9 ( 11 ): 33 - 35 , 38 .
赵晓焱 , 陈亚军 , 袁培燕 . D2D 通信中资源分配与功率优化联合算法 [J ] . 微电子学与计算机 , 2018 , 35 ( 5 ): 1 - 4 , 10 .
ZHAO X Y , CHEN Y J , YUAN P Y . Joint algorithm of resource allocation and power optimization in for device-to-device (D2D) communication [J ] . Microelectronics & Computer , 2018 , 35 ( 5 ): 1 - 4 , 10 .
沈悦 , 刘占军 , 武汉 , 等 . 支持 D2D 通信的蜂窝网自适应资源分配算法 [J ] . 计算机工程 , 2018 , 44 ( 2 ): 107 - 113 .
SHEN Y , LIU Z J , WU H , et al . Adaptive resource allocation algorithm for cellular networks supporting D2D communication [J ] . Computer Engineering , 2018 , 44 ( 2 ): 107 - 113 .
覃琦超 , 翟雷 . D2D通信中信道分配与功率优化联合算法 [J ] . 现代电子技术 , 2020 , 43 ( 23 ): 11 - 14 , 19 .
QIN Q C , ZHAI L . Joint algorithms of channel allocation and power optimization in D2D communication [J ] . Modern Electronics Technique , 2020 , 43 ( 23 ): 11 - 14 , 19 .
肖瑶 , 刘会衡 , 程晓红 , 等 . 基于灰狼优化和匈牙利算法的D2D 资源分配策略 [J ] . 计算机应用研究 , 2022 , 39 ( 5 ): 1529 - 1533 .
XIAO Y , LIU H H , CHENG X H , et al . D2D resource allocation strategy based on gray wolf optimizer and Hungarian algorithm [J ] . Application Research of Computers , 2022 , 39 ( 5 ): 1529 - 1533 .
HE C L , CHEN Q , PAN C H , et al . Resource allocation schemes based on coalition games for vehicular communications [J ] . IEEE Communications Letters , 2019 , 23 ( 12 ): 2340 - 2343 .
刘毅 , 肖玲玲 , 王改静 , 等 . 基于联合优化的 D2D 资源分配算法 [J ] . 吉林大学学报(工学版) , 2020 , 50 ( 1 ): 306 - 314 .
LIU Y , XIAO L L , WANG G J , et al . Resource allocation algorithm based joint optimization for D2D communications in cellular networks [J ] . Journal of Jilin University (Engineering and Technology Edition) , 2020 , 50 ( 1 ): 306 - 314 .
YANG H L , XIE X Z , KADOCH M . Intelligent resource management based on reinforcement learning for ultra-reliable and low-latency IoV communication networks [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 5 ): 4157 - 4169 .
金久一 , 邱恭安 . C-V2X 通信中资源分配与功率控制联合优化 [J ] . 计算机工程 , 2021 , 47 ( 10 ): 147 - 152 .
JIN J Y , QIU G A . Joint optimization of resource allocation and power control in C-V2X communications [J ] . Computer Engineering , 2021 , 47 ( 10 ): 147 - 152 .
杨帆 . 车联网场景下LTE-D2D通信的资源分配、干扰管理与网络性能研究 [D ] . 合肥:合肥工业大学 , 2021 .
YANG F . Research on resource allocation,interference management and network performance of LTE-D2D communication in vehicle networking scenarios [D ] . Hefei:Hefei University of Technology , 2021 .
王棒 , 邱恭安 . 干扰控制的车联网D2D通信资源分配算法 [J ] . 计算机工程与设计 , 2019 , 40 ( 8 ): 2106 - 2110 .
WANG B , QIU G A . Resource allocation algorithm with interference control for D2D communication in Internet of vehicles [J ] . Computer Engineering and Design , 2019 , 40 ( 8 ): 2106 - 2110 .
冯泓崭 . 基于车辆 D2D 通信的资源分配和中继选择算法研究与实现 [D ] . 上海:东华大学 , 2021 .
FENG H Z . Research and implementation of resource allocation and relay selection algorithm based on vehicle D2D communication [D ] . Shanghai:Donghua University , 2021 .
唐伦 , 肖娇 , 赵国繁 , 等 . 基于能效的 NOMA 蜂窝车联网动态资源分配算法 [J ] . 电子与信息学报 , 2020 , 42 ( 2 ): 526 - 533 .
TANG L , XIAO J , ZHAO G F , et al . Energy efficiency based dynamic resource allocation algorithm for cellular vehicular based on non-orthogonal multiple access [J ] . Journal of Electronics & Information Technology , 2020 , 42 ( 2 ): 526 - 533 .
LI X S , MA L , SHANKARAN R , et al . Joint power control and resource allocation mode selection for safety-related V2X communication [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 8 ): 7970 - 7986 .
YE H , LI G Y , JUANG B H F . Deep reinforcement learning based resource allocation for V2V communications [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 4 ): 3163 - 3173 .
XU Y H , YANG C C , HUA M , et al . Deep deterministic policy gradient (DDPG)-based resource allocation scheme for NOMA vehicular communications [J ] . IEEE Access , 2020 ( 8 ): 18797 - 18807 .
王晓昌 , 吴璠 , 孙彦赞 , 等 . 基于联邦深度强化学习的车联网资源分配 [J ] . 电子测量技术 , 2021 , 44 ( 10 ): 114 - 120 .
WANG X C , WU F , SUN Y Z , et al . Internet of vehicles resource management based on federal deep reinforcement learning [J ] . Electronic Measurement Technology , 2021 , 44 ( 10 ): 114 - 120 .
LIANG L , LI G Y , XU W . Resource allocation for D2D-enabled vehicular communications [J ] . IEEE Transactions on Communications , 2017 , 65 ( 7 ): 3186 - 3197 .
张海波 , 陶小方 , 刘开健 . 面向非正交多址的车联网中资源优化方案 [J ] . 计算机工程与应用 , 2022 , 58 ( 6 ): 103 - 109 .
ZHANG H B , TAO X F , LIU K J . Resource optimization scheme for non-orthogonal multiple access in Internet of vehicles [J ] . Computer Engineering and Applications , 2022 , 58 ( 6 ): 103 - 109 .
温琦丽 , 洪高风 , 苏伟 . 一种基于车联网的边缘云资源分配优化方案 [J ] . 电信科学 , 2019 , 35 ( S2 ): 185 - 190 .
WEN Q L , HONG G F , SU W . An edge cloud resource allocation optimization based on Internet of vehicles [J ] . Telecommunications Science , 2019 , 35 ( S2 ): 185 - 190 .
刘斐 , 曹钰杰 , 章国安 . 车联网场景下移动边缘计算协作式资源分配策略 [J ] . 电讯技术 , 2021 , 61 ( 7 ): 858 - 864 .
LIU F , CAO Y J , ZHANG G A . Collaborative resource allocation strategy for mobile edge computing in vehicular networks [J ] . Telecommunication Engineering , 2021 , 61 ( 7 ): 858 - 864 .
林峰 , 罗铖文 , 丁鹏举 , 等 . 车联网中自适应联合计算卸载资源分配算法 [J ] . 计算机工程与设计 , 2021 , 42 ( 7 ): 1824 - 1830 .
LIN F , LUO C W , DING P J , et al . Resource allocation algorithm for adaptive joint computing offloading in C-V2X [J ] . Computer Engineering and Design , 2021 , 42 ( 7 ): 1824 - 1830 .
LIU Y , YU H M , XIE S L , et al . Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 11 ): 11158 - 11168 .
ETSI . LTE; Service requirements for V2X services (V16.0.0;3GPP TS 22.185 version 16.0.0 release 16):ETSI TS 122 185-2020 [S ] . 2020 .
ABEDI M , POURKIANI M . Resource allocation in combined fog-cloud scenarios by using artificial intelligence [C ] // Proceedings of 2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC) . Piscataway:IEEE Press , 2020 : 218 - 222 .
LIANG L , YE H , YU G D , et al . Deep-learning-based wireless resource allocation with application to vehicular networks [J ] . Proceedings of the IEEE , 2020 , 108 ( 2 ): 341 - 356 .
HUSSAIN F , ANPALAGAN A , KHWAJA A S , et al . Resource allocation and congestion control in clustered M2M communication using Q-learning [J ] . Transactions on Emerging Telecommunications Technologies , 2017 , 28 ( 4 ): e3039 .
SALAHUDDIN M A , AL-FUQAHA A , GUIZANI M . Reinforcement learning for resource provisioning in the vehicular cloud [J ] . IEEE Wireless Communications , 2016 , 23 ( 4 ): 128 - 135 .
LIANG H B , ZHANG X H , HONG X T , et al . Reinforcement learning enabled dynamic resource allocation in the Internet of vehicles [J ] . IEEE Transactions on Industrial Informatics , 2021 , 17 ( 7 ): 4957 - 4967 .
ZONG K , LUO C C . Reinforcement learning based framework for COVID-19 resource allocation [J ] . Computers & Industrial Engineering , 2022 ( 167 ): 107960 .
GAI K K , QIU M K . Optimal resource allocation using reinforcement learning for IoT content-centric services [J ] . Applied Soft Computing , 2018 ( 70 ): 12 - 21 .
WANG J D , ZHAO L , LIU J J , et al . Smart resource allocation for mobile edge computing:a deep reinforcement learning approach [J ] . IEEE Transactions on Emerging Topics in Computing , 2021 , 9 ( 3 ): 1529 - 1541 .
0
浏览量
695
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构