浏览全部资源
扫码关注微信
1. 天翼数字生活科技有限公司,上海 200085
2. 中国信息通信科技集团有限公司,湖北 武汉 430070
[ "祝谷乔(1976- ),女,天翼数字生活科技有限公司高级工程师,主要研究方向为IPTV关键技术研究与标准化" ]
[ "姜超(1985- ),男,中国信息通信科技集团有限公司正高级工程师,主要研究方向为多媒体通信、光纤通信与智能终端等" ]
[ "徐煜烨(1992- ),女,中国信息通信科技集团有限公司工程师,主要研究方向为流媒体传输协议、音/视频编解码等" ]
网络出版日期:2023-07,
纸质出版日期:2023-07-20
移动端阅览
祝谷乔, 姜超, 徐煜烨. 超分辨率重建技术及其在智能终端上的应用[J]. 电信科学, 2023,39(7):156-165.
Guqiao ZHU, Chao JIANG, Yuye XU. Super-resolution reconstruction technology and its application on intelligent terminal device[J]. Telecommunications science, 2023, 39(7): 156-165.
祝谷乔, 姜超, 徐煜烨. 超分辨率重建技术及其在智能终端上的应用[J]. 电信科学, 2023,39(7):156-165. DOI: 10.11959/j.issn.1000-0801.2023150.
Guqiao ZHU, Chao JIANG, Yuye XU. Super-resolution reconstruction technology and its application on intelligent terminal device[J]. Telecommunications science, 2023, 39(7): 156-165. DOI: 10.11959/j.issn.1000-0801.2023150.
简单介绍了超分辨率重建技术的发展历程和几种有代表性的超分方法及其实现原理,提出了在智能终端上实现超分辨率重建技术的方案,通过实验仿真,给出了采用插值算法和深度学习算法实现的单图像超分辨率对终端处理性能、图像质量等方面的评估与分析,提出了利用智能终端实现超分的适用场景的建议。并进一步探讨了该技术在娱乐视频与家庭监控业务中的典型应用场景,展望了超分辨重建技术未来可能的研究方向以及与相关图像处理技术相融合的发展趋势。
The development history of super-resolution reconstruction technology and its typical approaches were briefly introduced.An implementation solution of super-resolution reconstruction was proposed on one kind of intelligent terminal device.The image super-resolution approaches implemented by interpolation algorithms and deep learning algorithms were experimented and simulated
and their results on terminal’s processing performance and images’ quality of experience were evaluated and analyzed.The suggestions on appropriate scenarios of super-resolution implemented by the intelligent terminal device were proposed.Furthermore
some typical cases of super-resolution reconstruction technology in the fields of entertainment video services and home surveillance services were discussed.The possible research direction and the trend of convergence of this technology and relevant image processing technologies were also prospected.
AGUSTSSON E , TIMOFTE R . NTIRE 2017 challenge on single image super-resolution:dataset and study [C ] // Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) . Piscataway:IEEE Press , 2017 : 1122 - 1131 .
TIMOFTE R , AGUSTSSON E , GOOL L V , et al . NTIRE 2017 challenge on single image super-resolution:methods and results [C ] // Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) . Piscataway:IEEE Press , 2017 : 1110 - 1121 .
CHEN C , XIONG Z W , TIAN X M , et al . Camera lens super-resolution [C ] // Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2020 : 1652 - 1660 .
SHI W Z , CABALLERO J , HUSZÁR F , et al . Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network [C ] // Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2016 : 1874 - 1883 .
黄健 , 赵元元 , 郭苹 , 等 . 深度学习的单幅图像超分辨率重建方法综述 [J ] . 计算机工程与应用 , 2021 , 57 ( 18 ): 13 - 23 .
HUANG J , ZHAO Y Y , GUO P , et al . Survey of single image super-resolution based on deep learning [J ] . Computer Engineering and Applications , 2021 , 57 ( 18 ): 13 - 23 .
SCHULTZ R R , STEVENSON R L . A Bayesian approach to image expansion for improved definition [J ] . IEEE Transactions on Image Processing , 1994 , 3 ( 3 ): 233 - 242 .
刘文星 . 基于深度学习的单图像及视频超分辨率重建算法研究 [D ] . 重庆:重庆理工大学 , 2022 .
LIU W X . Research on super-resolution reconstruction algorithm of single image and video based on deep learning [D ] . Chongqing:Chongqing University of Technology , 2022 .
VASWANI A , SHAZEER N , PARMAR N , et al . Attention is all You need [C ] // Proceedings of the 31st International Conference on Neural Information Processing Systems . New York:ACM Press , 2017 : 6000 - 6010 .
WANG X T , YU K , DONG C , et al . Recovering realistic texture in image super-resolution by deep spatial feature transform [C ] // Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2018 : 606 - 615 .
SAJJADI M S M , SCHÖLKOPF B , HIRSCH M . EnhanceNet:single image super-resolution through automated texture synthesis [C ] // Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV) . Piscataway:IEEE Press , 2017 : 4501 - 4510 .
WANG Z , BOVIK A C , SHEIKH H R , et al . Image quality assessment:from error visibility to structural similarity [J ] . IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society , 2004 , 13 ( 4 ): 600 - 612 .
YANG F Z , YANG H , FU J L , et al . Learning texture transformer network for image super-resolution [C ] // Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2020 : 5790 - 5799 .
HE Z L , HUANG H X , JIANG M , et al . FPGA-based real-time super-resolution system for ultra high definition videos [C ] // Proceedings of 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM) . Piscataway:IEEE Press , 2018 : 181 - 188 .
WEI P X , XIE Z W , LU H N , et al . Component divide-and-conquer for real-world image super-resolution [C ] // European Conference on Computer Vision . Cham:Springer , 2020 : 101 - 117 .
ZENG H M , ZHANG X L , YU Z B , et al . SR-ITM-GAN:learning 4k UHD HDR with a generative adversarial network [J ] . IEEE Access , 2020 , 8 : 182815 - 182827 .
LIU Z , CUI C . A new low bit-rate coding scheme for ultra high definition video based on super-resolution [C ] // 2018 IEEE Internation Conference on Computer and Communication Engineering Technology (CCET) . Piscataway:IEEE Press , 2018 : 325 - 329 .
0
浏览量
185
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构