浏览全部资源
扫码关注微信
1. 广西科技大学电子工程学院,广西 柳州 545006
2. 山西应用科技学院,山西 太原 030062
3. 国家电网重庆市电力公司大足供电分公司,重庆 402360
[ "闫俊杰(1990- ),男,博士,广西科技大学电子工程学院讲师,主要研究方向为MEC、UAV通信、D2D 通信" ]
[ "朱亚新(1998- ),女,广西科技大学电子工程学院硕士生,主要研究方向为 MEC、UAV通信、D2D通信" ]
[ "冯艳如(1990- ),女,山西应用科技学院讲师,主要研究方向为信息传输及信息安全" ]
[ "刘汉永(1992- ),女,国家电网重庆市电力公司大足供电分公司工程师,主要研究方向为区块链、网络安全、密码学、自动化、电网营销" ]
[ "邓钧忆(1985- ),男,博士,广西科技大学电子工程学院助理研究员,主要研究方向为车联网、MEC" ]
[ "王欢(1987- ),男,博士,广西科技大学电子工程学院副教授,主要研究方向为智能网络与信息安全、高可用软件" ]
网络出版日期:2023-08,
纸质出版日期:2023-08-20
移动端阅览
闫俊杰, 朱亚新, 冯艳茹, 等. 面向可伸缩视频编码传输的DDPG无人机服务增强机制[J]. 电信科学, 2023,39(8):69-81.
Junjie YAN, Yaxin ZHU, Yanru FENG, et al. UAV service enhancement mechanism deep deterministic policy gradient for scalable video coding transmission[J]. Telecommunications science, 2023, 39(8): 69-81.
闫俊杰, 朱亚新, 冯艳茹, 等. 面向可伸缩视频编码传输的DDPG无人机服务增强机制[J]. 电信科学, 2023,39(8):69-81. DOI: 10.11959/j.issn.1000-0801.2023158.
Junjie YAN, Yaxin ZHU, Yanru FENG, et al. UAV service enhancement mechanism deep deterministic policy gradient for scalable video coding transmission[J]. Telecommunications science, 2023, 39(8): 69-81. DOI: 10.11959/j.issn.1000-0801.2023158.
无人机(UAV)因其机载存储、通信和计算能力成为未来空天地一体化网络的重要组成部分。然而,现有无人机辅助的边缘网络研究总是更多地从网络的视角出发,缺少从用户视角出发带来的变革。为此,从用户角度出发,提出一种面向可伸缩视频传输的DDPG无人机服务增强机制。首先,结合无人机提出一种基于可伸缩视频编码(SVC)的弹性视频传输方法,提高用户的差异化体验。其次,以最大化用户接收增强层视频的数量为目标,提出一种基于深度确定性策略梯度(DDPG)算法的无人机路径规划设计,保证UAV对热点区域增强覆盖的有效性。仿真结果表明,所提出的算法与深度Q网络(DQN)算法、最短路径(SP)算法相比,在不同的用户分布下得到的增强层数量平均分别可以提高47.9%、76.4%,该研究达到了热点区域覆盖增强和用户差异化体验的效果。
Unmanned aerial vehicles (UAV) are an important component of future air-space-ground integrated network due to their onboard storage
communication
and computing capabilities.However
existing research on UAV-assisted edge networks often focuses more on the network perspective and lacks consideration of user perspectives and their requirements.Therefore
a UAV service enhancement mechanism based on deep deterministic policy gradient (DDPG) for scalable video coding (SVC) transmission was proposed from the user’s perspective.Firstly
an elastic video transmission method based on SVC was proposed in conjunction with UAV to improve differentiated user experiences.Secondly
a UAV trajectory planning design based on the DDPG algorithm was proposed to maximize the number of users receiving enhanced layer videos and ensure effective coverage enhancement by UAV in hotspot areas.Simulation results show that compared with both the deep Q network (DQN) algorithm and shortest path (SP) algorithm under different user distributions
the proposed algorithm can increase the average number of enhanced layers received by 47.9% and 76.4%
respectively.This study successfully achieves improved coverage in hotspot areas while also providing differentiated user experiences through its proposed methods.
WU Q Q , ZENG Y , ZHANG R . Joint trajectory and communication design for multi-UAV enabled wireless networks [J ] . IEEE Transactions on Wireless Communications , 2018 , 17 ( 3 ): 2109 - 2121 .
FU Y J , MEI H B , WANG K Z , et al . Joint optimization of 3D trajectory and scheduling for solar-powered UAV systems [J ] . IEEE Transactions on Vehicular Technology , 2021 , 70 ( 4 ): 3972 - 3977 .
陈新颖 , 盛敏 , 李博 , 等 . 面向 6G 的无人机通信综述 [J ] . 电子与信息学报 , 2022 , 44 ( 3 ): 781 - 789 .
CHEN X Y , SHENG M , LI B , et al . Survey on unmanned aerial vehicle communications for 6G [J ] . Journal of Electronics & Information Technology , 2022 , 44 ( 3 ): 781 - 789 .
ZHOU H , HU F H , JURAS M , et al . Real-time video streaming and control of cellular-connected UAV system:prototype and performance evaluation [J ] . IEEE Wireless Communications Letters , 2021 , 10 ( 8 ): 1657 - 1661 .
ZHAN C , HUANG R J . Energy efficient adaptive video streaming with rotary-wing UAV [J ] . IEEE Transactions on Vehicular Technology , 2020 , 69 ( 7 ): 8040 - 8044 .
ZHAO N , CHENG F , YU F R , et al . Caching UAV assisted secure transmission in hyper-dense networks based on interference alignment [J ] . IEEE Transactions on Communications , 2018 , 66 ( 5 ): 2281 - 2294 .
LIU Z C , JIANG Y . Cross-layer design for UAV-based streaming media transmission [J ] . IEEE Transactions on Circuits and Systems for Video Technology , 2022 , 32 ( 7 ): 4710 - 4723 .
ZHANG Y Q , XU C , HEMADEH I A , et al . Near-instantaneously adaptive multi-set space-time shift keying for UAV-aided video surveillance [J ] . IEEE Transactions on Vehicular Technology , 2020 , 69 ( 11 ): 12843 - 12856 .
MNIH V , KAVUKCUOGLU K , SILVER D , et al . Human-level control through deep reinforcement learning [J ] . Nature , 2015 , 518 ( 7540 ): 529 - 533 .
XIAO L , DING Y Z , HUANG J H , et al . UAV anti-jamming video transmissions with QoE guarantee:a reinforcement learning-based approach [J ] . IEEE Transactions on Communications , 2021 , 69 ( 9 ): 5933 - 5947 .
LIU Y , YAN J J , ZHAO X H . Deep reinforcement learning based latency minimization for mobile edge computing with virtualization in maritime UAV communication network [J ] . IEEE Transactions on Vehicular Technology , 2022 , 71 ( 4 ): 4225 - 4236 .
DING R J , GAO F F , SHEN X S . 3D UAV trajectory design and frequency band allocation for energy-efficient and fair communication:a deep reinforcement learning approach [J ] . IEEE Transactions on Wireless Communications , 2020 , 19 ( 12 ): 7796 - 7809 .
CUI Y L , DENG D H , WANG C W , et al . Joint trajectory and power optimization for energy efficient UAV communication using deep reinforcement learning [C ] // Proceedings of IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) . Piscataway:IEEE Press , 2021 : 1 - 6 .
SAMIR M , ASSI C , SHARAFEDDINE S , et al . Age of information aware trajectory planning of UAVs in intelligent transportation systems:a deep learning approach [J ] . IEEE Transactions on Vehicular Technology , 2020 , 69 ( 11 ): 12382 - 12395 .
KANG H Y , CHANG X L , MIŠIĆ J , , et al . Improving dual-UAV aided ground-UAV Bi-directional communication security:joint UAV trajectory and transmit power optimization [J ] . IEEE Transactions on Vehicular Technology , 2022 , 71 ( 10 ): 10570 - 10583 .
WU D P , LIU Q R , WANG H G , et al . Cache less for more:exploiting cooperative video caching and delivery in D2D communications [J ] . IEEE Transactions on Multimedia , 2019 , 21 ( 7 ): 1788 - 1798 .
SONG D , ZHAI X B , LIU X , et al . Jointly optimal fair data collection and trajectory design algorithms in UAV-aided cellular networks [C ] // Proceedings of 2021 IEEE Wireless Communications and Networking Conference (WCNC) . Piscataway:IEEE Press , 2021 : 1 - 6 .
CONDOLUCI M , ARANITI G , MOLINARO A , et al . Multicast resource allocation enhanced by channel state feedbacks for multiple scalable video coding streams in LTE networks [J ] . IEEE Transactions on Vehicular Technology , 2016 , 65 ( 5 ): 2907 - 2921 .
ZENG Y , XU J , ZHANG R . Energy minimization for wireless communication with rotary-wing UAV [J ] . IEEE Transactions on Wireless Communications , 2019 , 18 ( 4 ): 2329 - 2345 .
TANG F X , HOFNER H , KATO N , et al . A deep reinforcement learning-based dynamic traffic offloading in space-air-ground integrated networks (SAGIN) [J ] . IEEE Journal on Selected Areas in Communications , 2022 , 40 ( 1 ): 276 - 289 .
0
浏览量
299
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构