浏览全部资源
扫码关注微信
[ "赵雷(1997- ),男,中国移动通信有限公司研究院工程师,主要研究方向为无线网络智能化技术及算法" ]
[ "张苗苗(1993- ),女,中国移动通信有限公司研究院工程师,主要研究方向为无线网络智能化技术及算法" ]
[ "李光宇(1989- ),男,中国移动通信有限公司研究院工程师,主要研究方向为无线网络智能化技术" ]
[ "关焯文(1993- ),男,中国移动通信有限公司研究院工程师,主要研究方向为无线网络智能化技术" ]
[ "刘思佳(1994- ),女,中国移动通信有限公司研究院工程师,主要研究方向为无线网络智能化技术及算法" ]
[ "肖赵斌(1990- ),男,中国移动通信有限公司研究院工程师,主要研究方向为无线网络智能化技术" ]
[ "曹玉婷(1993- ),女,中国移动通信有限公司研究院工程师,主要研究方向为无线网络智能化技术及算法" ]
[ "吕喆(1988- ),男,中国移动通信有限公司研究院工程师,主要研究方向为网络智能化技术及算法" ]
[ "梁燕萍(1986- ),女,中国移动通信有限公司研究院工程师,主要研究方向为网络智能化技术" ]
网络出版日期:2023-08,
纸质出版日期:2023-08-25
移动端阅览
赵雷, 张苗苗, 李光宇, 等. 九天智慧网络仿真平台设计和开放服务[J]. 电信科学, 2023,39(9):43-53.
Lei ZHAO, Miaomiao ZHANG, Guangyu LI, et al. Design and open services of JiuTian intelligent network simulation platform[J]. Telecommunications science, 2023, 39(9): 43-53.
赵雷, 张苗苗, 李光宇, 等. 九天智慧网络仿真平台设计和开放服务[J]. 电信科学, 2023,39(9):43-53. DOI: 10.11959/j.issn.1000-0801.2023178.
Lei ZHAO, Miaomiao ZHANG, Guangyu LI, et al. Design and open services of JiuTian intelligent network simulation platform[J]. Telecommunications science, 2023, 39(9): 43-53. DOI: 10.11959/j.issn.1000-0801.2023178.
介绍了九天智慧网络仿真平台,该平台可提供智慧网络开放创新平台的无线通信仿真数据和环境服务。包含一系列可扩展的仿真器功能,通过开放服务方便用户基于仿真环境和数据利用强化学习等算法进行模型训练和推理,并且可以通过上传和更新参数配置解决不同场景下的优化任务。主要从背景、整体架构、仿真器、业务场景和未来方向来介绍此平台及其开放的服务。
The JiuTian intelligent network simulation platform was proposed
which could provide wireless communication simulation data services for the open innovation platform.The platform contained a series of scalable simulator functionalities
offering open services that enable users to use reinforcement learning algorithms for model training and inference based on simulation environments and data.Additionally
it allowed users to address optimization tasks in different scenarios by uploading and updating parameter configurations.The platform and its open services were primarily introduced from the perspectives of background
overall architecture
simulator
business scenarios
and future directions.
王胡成 , 徐晖 , 程志密 , 等 . 5G 网络技术研究现状和发展趋势 [J ] . 电信科学 , 2015 , 31 ( 9 ): 149 - 155 .
WANG H C , XU H , CHENG Z M , et al . Current research and development trend of 5G network technologies [J ] . Telecommunications Science , 2015 , 31 ( 9 ): 149 - 155 .
SCHANK R C . Where’s the AI? [J ] . AI Magazine , 1991 , 12 ( 4 ): 38 - 38 .
中国移动 . 九天人工智能平台 [Z ] . 2022 .
China Mobile . JiuTian intelligent network simulation platform [Z ] . 2022 .
GUO J , HE H , HE T , et al . Gluoncv and gluonnlp:deep learning in computer vision and natural language processing [J ] . The Journal of Machine Learning Research , 2020 , 21 ( 1 ): 845 - 851 .
RADFORD A , METZ L , CHINTALA S . Unsupervised representation learning with deep convolutional generative adversarial networks [J ] . arXiv preprint , 2015 ,arXiv:1511.06434.
KAELBLING L P , LITTMAN M L , MOORE A W . Reinforcement learning:a survey [J ] . Journal of Artificial Intelligence Research , 1996 ( 4 ): 237 - 285 .
SCHULMAN J , WOLSKI F , DHARIWAL P , et al . Proximal policy optimization algorithms [J ] . arXiv preprint , 2017 ,arXiv:707.06347.
SUTTON R S , BARTO A G . Reinforcement learning:an introduction [M ] . Cambridge : MIT Press , 1998 .
BELLEMARE M G , NADDAF Y , VENESS J , et al . The arcade learning environment:an evaluation platform for general agents [J ] . Journal of Artificial Intelligence Research , 2013 ( 47 ): 253 - 279 .
LONG Q Y , WANG H D , LI T , et al . Practical synthetic human trajectories generation based on variational point processes [C ] // Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining . New York:ACM Press , 2023 .
FENG J , YANG Z Y , XU F L , et al . Learning to simulate human mobility [C ] // Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining . New York:ACM Press , 2020 : 3426 - 3433 .
KINGMA D P , WELLING M . Auto-encoding variational bayes [J ] . arXiv preprint , 2013 ,arXiv:1312.6114.
GOODFELLOW I , POUGET-ABADIE J , MIRZA M , et al . Generative adversarial networks [J ] . Communications of the ACM , 2020 , 63 ( 11 ): 139 - 144 .
AFROZ F , SUBRAMANIAN R , HEIDARY R , et al . SINR,RSRP,RSSI and RSRQ measurements in long term evolution networks [J ] . International Journal of Wireless & Mobile Networks , 2015 , 7 ( 4 ): 113 - 123 .
PARK C S , PARK S . Analysis of RSRP measurement accuracy [J ] . IEEE Communications Letters , 2016 , 20 ( 3 ): 430 - 433 .
GUO H Y , LIANG Y C , CHEN J , et al . Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks [J ] . IEEE Transactions on Wireless Communications , 2020 , 19 ( 5 ): 3064 - 3076 .
IWAMURA M , ETEMAD K , FONG M H , et al . Carrier aggregation framework in 3GPP LTE-advanced[WiMAX/LTE Update] [J ] . IEEE Communications Magazine , 2010 , 48 ( 8 ): 60 - 67 .
MOUNTASER G , ROSAS M L , MAHMOODI T , et al . On the feasibility of MAC and PHY split in cloud RAN [C ] // Proceedings of 2017 IEEE Wireless Communications and Networking Conference (WCNC) . Piscataway:IEEE Press , 2017 : 1 - 6 .
MAEDER A , LALAM M , DE DOMENICO A , et al . Towards a flexible functional split for cloud-RAN networks [C ] // Proceedings of 2014 European Conference on Networks and Communications (EuCNC) . Piscataway:IEEE Press , 2014 : 1 - 5 .
YOU X H , ZHANG C , TAN X S , et al . AI for 5G:research directions and paradigms [J ] . Science China Information Sciences , 2019 , 62 ( 2 ): 21301 .
LI R P , ZHAO Z F , ZHOU X , et al . Intelligent 5G:when cellular networks meet artificial intelligence [J ] . IEEE Wireless Communications , 2017 , 24 ( 5 ): 175 - 183 .
LU L , LI G Y , SWINDLEHURST A L , et al . An overview of massive MIMO:benefits and challenges [J ] . IEEE Journal of Selected Topics in Signal Processing , 2014 , 8 ( 5 ): 742 - 758 .
LARSSON E G , EDFORS O , TUFVESSON F , et al . Massive MIMO for next generation wireless systems [J ] . IEEE Communications Magazine , 2014 , 52 ( 2 ): 186 - 195 .
HENDERSON P , ISLAM R , BACHMAN P , et al . Deep reinforcement learning that matters [J ] . Proceedings of the AAAI Conference on Artificial Intelligence , 2018 , 32 ( 1 ).
KINGMA D P , BA J . Adam:a method for stochastic optimization [J ] . arXiv preprint , 2014 ,arXiv:1412.6980.
王建斌 , 王恒钧 , 吴松 , 等 . 基于粒子群优化算法的5G波束权值寻优方法 [J ] . 电信科学 , 2023 , 39 ( 7 ): 23 - 34 .
WANG J B , WANG H J , WU S , et al . 5G beamforming weight optimization method based on particle swarm optimization algorithm [J ] . Telecommunications Science , 2023 , 39 ( 7 ): 23 - 34 .
GUO J , WEN C , JIN S , et al . Overview of deep learning-based CSI feedback in massive MIMO systems [J ] . arXiv preprint , 2022 ,arXiv:2206.14383.
POLI A A , CIRILLO M C . On the use of the normalized mean square error in evaluating dispersion model performance [J ] . Atmospheric Environment.Part A.General Topics , 1993 , 27 ( 15 ): 2427 - 2434 .
0
浏览量
219
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构