浏览全部资源
扫码关注微信
1. 浙江警察学院,浙江 杭州 310053
2. 杭州电子科技大学网络空间安全学院,浙江 杭州 310018
3. 台州市税务局,浙江 台州 318001
[ "周胜利(1982- ),男,博士,浙江警察学院副教授,主要研究方向为网络安全、网络监察管理" ]
[ "阮琳琦(1996- ),女,浙江警察学院讲师,主要研究方向为网络安全" ]
[ "徐睿(2000- ),男,杭州电子科技大学网络空间安全学院硕士生,主要研究方向为网络安全、机器学习" ]
[ "张熙康(2000- ),男,杭州电子科技大学网络空间安全学院硕士生,主要研究方向为网络安全、自然语言处理" ]
[ "赵泉喆(2000- ),男,杭州电子科技大学网络空间安全学院硕士生,主要研究方向为网络安全、数字取证" ]
[ "连远博(2001- ),男,台州市税务局工程师,主要研究方向为网络安全" ]
网络出版日期:2023-08,
纸质出版日期:2023-08-25
移动端阅览
周胜利, 阮琳琦, 徐睿, 等. 基于关联规则特征提取的网络行为被害性识别集成优化模型[J]. 电信科学, 2023,39(9):129-140.
Shengli ZHOU, Linqi RUAN, Rui XU, et al. An integrated optimization model of network behavior victimization identification based on association rule feature extraction[J]. Telecommunications science, 2023, 39(9): 129-140.
周胜利, 阮琳琦, 徐睿, 等. 基于关联规则特征提取的网络行为被害性识别集成优化模型[J]. 电信科学, 2023,39(9):129-140. DOI: 10.11959/j.issn.1000-0801.2023180.
Shengli ZHOU, Linqi RUAN, Rui XU, et al. An integrated optimization model of network behavior victimization identification based on association rule feature extraction[J]. Telecommunications science, 2023, 39(9): 129-140. DOI: 10.11959/j.issn.1000-0801.2023180.
网络行为被害风险识别对电信网络诈骗反制预警具有重要意义。针对被害人网络行为特征规则挖掘不足、行为序列间关系难以确定等问题,提出一种基于关联规则特征提取的网络行为被害性识别集成优化模型。模型首先抓取用户访问网站时产生的交互式流量数据包,提取网络流量中的隐性和显性行为特征,再利用频繁模式增长算法挖掘特征间关联规则并重构特征序列,最后结合粒子群优化的随机森林算法,建立基于网络流量分析的电信网络诈骗被害性分析模型。实验表明,相比于普通二分类模型,所提模型具有更好的精确率和召回率,能够有效提升被害性的识别准确率。
The identification of the risk of network behavior victimization was of great significance for the prevention and warning of telecom network fraud.Insufficient mining of network behavior features and difficulty in determining relationships
an integrated optimization model for network behavior victimization identification based on association rule feature extraction was proposed.The interactive traffic data packets generated when users accessed websites were captured by the model
and the implicit and explicit behavior features in network traffic were extracted.Then
the association rules between features were mined
and the feature sequences were reconstructed using the FP-Growth algorithm.Finally
an analysis model of telecom network fraud victimization based on network traffic analysis was established
combined with the stochastic forest algorithm of particle swarm optimization.The experiments show that compared with general binary classification models
the proposed model has better precision and recall rates and can effectively improve the accuracy of network fraud victimization identification.
陈易平 , 俞龙 , 谌颃 . 大数据环境下基于小波神经网络和ARMA 模型的流量异常检测 [J ] . 重庆理工大学学报(自然科学版) , 2019 , 33 ( 10 ): 149 - 154 .
CHEN Y P , YU L , CHEN H . Traffic anomaly detection based on wavelet neural network and ARMA model in big data environment [J ] . Journal of Chongqing Institute of Technology , 2019 , 33 ( 10 ): 149 - 154 .
吴蕾 , 曾慧平 , 王海威 . 网络非平稳流量多尺度时间序列预测数学建模 [J ] . 计算机仿真 , 2021 , 38 ( 8 ): 356 - 359 , 434 .
WU L , ZENG H P , WANG H W . Mathematical modeling of multi-scale time series prediction for network non-stationary traffic [J ] . Computer Simulation , 2021 , 38 ( 8 ): 356 - 359 , 434 .
向昌盛 , 陈志刚 . 面向海量数据的网络流量混沌预测模型 [J ] . 计算机科学 , 2021 , 48 ( 5 ): 289 - 293 .
XIANG C S , CHEN Z G . Chaotic prediction model of network traffic for massive data [J ] . Computer Science , 2021 , 48 ( 5 ): 289 - 293 .
席荣康 , 蔡满春 , 芦天亮 , 等 . 基于自注意力机制和时空特征的 Tor 网站流量分析模型 [J ] . 计算机应用 , 2022 , 42 ( 10 ): 3084 - 3090 .
XI R K , CAIM C , LU T L , et al . Tor website traffic analysis model based on self-attention mechanism and spatiotemporal features [J ] . Journal of Computer Applications , 2022 , 42 ( 10 ): 3084 - 3090 .
郭旭 , 朱敬华 . 基于用户向量化表示和注意力机制的深度神经网络推荐模型 [J ] . 计算机科学 , 2019 , 46 ( 8 ): 111 - 115 .
GUO X , ZHU J H . Deep neural network recommendation model based on user vectorization representation and attention mechanism [J ] . Computer Science , 2019 , 46 ( 8 ): 111 - 115 .
都奕冰 , 孙静宇 . 融合项目嵌入表征与注意力机制的推荐算法 [J ] . 计算机工程与设计 , 2020 , 41 ( 3 ): 682 - 688 .
DU Y B , SUN J Y . Recommendation algorithm based on item embedding characterization and attention mechanism [J ] . Computer Engineering and Design , 2020 , 41 ( 3 ): 682 - 688 .
向卓元 , 刘志聪 , 吴玉 . 基于用户行为自适应推荐模型研究 [J ] . 数据分析与知识发现 , 2021 , 5 ( 4 ): 103 - 114 .
XIANG Z Y , LIU Z C , WU Y . Adaptive recommendation model based on user behaviors [J ] . Data Analysis and Knowledge Discovery , 2021 , 5 ( 4 ): 103 - 114 .
叶春明 , 李志 , 郑科栋 , 等 . 一种基于用户行为状态特征的流量识别方法 [J ] . 计算机应用研究 , 2015 , 32 ( 2 ): 560 - 564 , 578 .
YE C M , LI Z , ZHENG K D , et al . Traffic classification based on analysis to users’ activities status [J ] . Application Research of Computers , 2015 , 32 ( 2 ): 560 - 564 , 578 .
钱叶魁 , 陈鸣 , 郝强 , 等 . ODC:在线检测和分类全网络流量异常的方法 [J ] . 通信学报 , 2011 , 32 ( 1 ): 111 - 120 .
QIAN Y K,CHENM , HAO Q , et al . ODC:a method for online detecting & classifying network-wide traffic anomalies [J ] . Journal on Communications , 2011 , 32 ( 1 ): 111 - 120 .
ERFANI S M , RAJASEGARAR S , KARUNASEKERA S , et al . High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning [J ] . Pattern Recognition , 2016 ( 58 ): 121 - 134 .
郭志民 , 彭豪辉 , 牛霜霞 , 等 . 基于用户与网络行为分析的主机异常检测方法 [J ] . 北京交通大学学报 , 2018 , 42 ( 5 ): 40 - 46 .
GUO Z M , PENG H H , NIU S X , et al . Analyzing user and network behaviors for host-based anomaly detection [J ] . Journal of Beijing Jiaotong University , 2018 , 42 ( 5 ): 40 - 46 .
胡富增 , 王勇军 . 基于数据挖掘的计算机用户行为分析与识别 [J ] . 自动化技术与应用 , 2020 , 39 ( 6 ): 42 - 47 .
HU F Z , WANG Y J . Analysis and recognition of computer user behavior based on data mining [J ] . Techniques of Automation and Applications , 2020 , 39 ( 6 ): 42 - 47 .
王晓东 , 赵一宁 , 肖海力 , 等 . 使用GNN与RNN实现用户行为分析 [J ] . 计算机科学与探索 , 2021 , 15 ( 5 ): 838 - 847 .
WANG X D , ZHAO Y N , XIAO H L , et al . User behavior analysis with RNN and graph neural networks [J ] . Journal of Frontiers of Computer Science & Technology , 2021 , 15 ( 5 ): 838 - 847 .
周胜利 , 徐啸炀 . 基于网络流量的用户网络行为被害性分析模型 [J ] . 电信科学 , 2021 , 37 ( 2 ): 125 - 134 .
ZHOU S L , XU X Y . Victimization analysis model of user network behavior based on network traffic [J ] . Telecommunications Science , 2021 , 37 ( 2 ): 125 - 134 .
0
浏览量
87
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构