浏览全部资源
扫码关注微信
1. 中国电信股份有限公司研究院,北京 102209
2. 北京邮电大学,北京 100876
[ "杨蓓(1988- ),女,中国电信股份有限公司研究院高级工程师,主要研究方向为5G/6G无线AI与国际标准化" ]
[ "梁鑫(1997- ),男,北京邮电大学博士生,主要研究方向为物理层无线通信、深度学习等" ]
[ "尹航(1994- ),男,中国电信股份有限公司研究院工程师,主要研究方向为5G/6G超大规模天线技术、覆盖增强等物理层关键技术" ]
[ "蒋峥(1972- ),男,博士,中国电信股份有限公司研究院正高级工程师,主要研究方向为无线网络架构、非公共网络、大规模天线等" ]
[ "佘小明(1977- ),男,博士,中国电信股份有限公司研究院正高级工程师,主要研究方向为5G/6G无线技术与标准化" ]
网络出版日期:2023-11,
纸质出版日期:2023-11-20
移动端阅览
杨蓓, 梁鑫, 尹航, 等. 基于自注意力机制的大规模MIMO信道状态信息特征向量反馈方法[J]. 电信科学, 2023,39(11):128-136.
Bei YANG, Xin LIANG, Hang YIN, et al. Self-attention mechanism-based CSI eigenvector feedback for massive MIMO[J]. Telecommunications science, 2023, 39(11): 128-136.
杨蓓, 梁鑫, 尹航, 等. 基于自注意力机制的大规模MIMO信道状态信息特征向量反馈方法[J]. 电信科学, 2023,39(11):128-136. DOI: 10.11959/j.issn.1000-0801.2023247.
Bei YANG, Xin LIANG, Hang YIN, et al. Self-attention mechanism-based CSI eigenvector feedback for massive MIMO[J]. Telecommunications science, 2023, 39(11): 128-136. DOI: 10.11959/j.issn.1000-0801.2023247.
大规模多输入多输出(MIMO)系统可以为5G和未来无线通信系统提供令人满意的频谱效率的增益。在频分双工(FDD)模式下,需要将下行信道状态信息(CSI)的特征向量精确地反馈到基站侧以获得这种增益。为了提升下行 CSI 特征向量的反馈精度,提出了一种基于自注意力机制的 CSI 反馈方法 SA-CsiNet。SA-CsiNet通过分别在编、解码器部署自注意力模块实现CSI的特征提取和重构。仿真实验结果表明,相较于码本和传统的深度学习CSI反馈方案而言,SA-CsiNet能够提供更高的CSI重建精度。
Massive multiple-input multiple-output (MIMO) system can provide satisfying gain of spectrum efficiency for 5G and future wireless communication systems.In frequency-division duplex (FDD) mode
downlink channel state information (CSI) needs to be accurately fed back to the base station side to obtain this gain.To improve the feedback accuracy of downlink CSI eigenvector
a self-attention mechanism-based CSI feedback method named SA-CsiNet was proposed.SA-CsiNet respectively deployed self-attention modules at the encoder and the decoder to achieve feature extraction and reconstruction of CSI.Experimental results show that compared with codebook-based and conventional deep learning-based CSI feedback approaches
SA-CsiNet provides higher reconstruction accuracy of CSI.
骆胜军 , 张申科 . 5G大规模天线技术发展及创新方向 [J ] . 电信科学 , 2020 , 36 ( 11 ): 141 - 148 .
LUO S J , ZHANG S K . 5G large-scale array antenna technology development and innovation direction [J ] . Telecommunications Science , 2020 , 36 ( 11 ): 141 - 148 .
王正强 , 杨晓娜 , 万晓榆 , 等 . 大规模 MIMO 系统能效优化算法研究综述 [J ] . 重庆邮电大学学报(自然科学版) , 2019 , 31 ( 6 ): 743 - 752 .
WANG Z Q , YANG X N , WAN X Y , et al . Energy efficiency optimization algorithm in massive MIMO systems:a survey [J ] . Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition) , 2019 , 31 ( 6 ): 743 - 752 .
张冬雪 , 杜洁汝 , 何世彪 , 等 . 面向大规模 MIMO 系统的下行预编码技术研究进展 [J ] . 电讯技术 , 2023 , 63 ( 2 ): 291 - 299 .
ZHANG D X , DU J R , HE S B , et al . Research progress of downlink precoding techniques for massive MIMO systems [J ] . Telecommunication Engineering , 2023 , 63 ( 2 ): 291 - 299 .
陈成瑞 , 程港 , 何世彪 , 等 . 基于人工智能的大规模 MIMO信道状态信息反馈综述 [J ] . 电讯技术 , 2021 , 61 ( 9 ): 1181 - 1190 .
CHEN C R , CHENG G , HE S B , et al . Survey of massive MIMO channel state information feedback based on artificial intelligence [J ] . Telecommunication Engineering , 2021 , 61 ( 9 ): 1181 - 1190 .
ETSI . 5G; NR; Physical layer procedures for data (V16.1.0,Release 16):TS 38.214 [S ] . 2020 .
毛攀 , 黄小光 , 汪伟 , 等 . 基于压缩感知的大规模 MIMO 信道估计与反馈 [J ] . 电信科学 , 2018 , 34 ( 12 ): 46 - 52 .
MAO P , HUANG X G , WANG W , et al . Massive MIMO channel estimation and feedback based on compressed sensing [J ] . Telecommunications Science , 2018 , 34 ( 12 ): 46 - 52 .
黄秋萍 , 刘晓峰 , 高秋彬 , 等 . 基于人工智能的大规模天线信道状态信息反馈研究 [J ] . 电信科学 , 2022 , 38 ( 3 ): 74 - 83 .
HUANG Q P , LIU X F , GAO Q B , et al . Study of channel state information feedback based on artificial intelligence [J ] . Telecommunications Science , 2022 , 38 ( 3 ): 74 - 83 .
Qualcomm . New SI:study on artificial intelligence (AI)/machine learning (ML) for NR air interface:RP-213599 [R ] . 2021 .
WEN C K , SHIH W T , JIN S . Deep learning for massive MIMO CSI feedback [J ] . IEEE Wireless Communications Letters , 2018 , 7 ( 5 ): 748 - 751 .
LU Z L , WANG J T , SONG J . Multi-resolution CSI feedback with deep learning in massive MIMO system [C ] // Proceedings of ICC 2020 - 2020 IEEE International Conference on Communications (ICC) . Piscataway:IEEE Press , 2020 : 1 - 6 .
WANG T , WEN C K , JIN S , et al . Deep learning-based CSI feedback approach for time-varying massive MIMO channels [J ] . IEEE Wireless Communications Letters , 2018 , 8 ( 2 ): 416 - 419 .
GUO J , YANG X , WEN C K , et al . DL-based CSI feedback and cooperative recovery in massive MIMO [J ] . arXiv preprint arXiv:2003.03303 , 2020 .
CHEN T , GUO J J , JIN S , et al . A novel quantization method for deep learning-based massive MIMO CSI feedback [C ] // Proceedings of 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP) . Piscataway:IEEE Press , 2019 : 1 - 5 .
CHANG H , LIANG X , LI H , et al . Deep learning-based bitstream error correction for CSI feedback [J ] . IEEE Wireless Communications Letters , 2021 , 10 ( 12 ): 2828 - 2832 .
VASWANI A , SHAZEER N , PARMAR N , et al . Attention is all you need [C ] // Proceedings of the 31st International Conference on Neural Information Processing Systems . New York:ACM Press , 2017 : 6000 - 6010 .
GUO J , WEN C K , JIN S , et al . Convolutional neural network-based multiple-rate compressive sensing for massive MIMO CSI feedback:design,simulation,and analysis [J ] . IEEE Transactions on Wireless Communications , 2020 , 19 ( 4 ): 2827 - 2840 .
KINGMA D P , BA J . Adam:a method for stochastic optimization [J ] . arXiv preprint arXiv:1412.6980 , 2014 .
SHLEZINGER N , ELDAR Y C . Deep task-based quantization [J ] . Entropy , 2021 , 23 ( 1 ): 104 .
GUO J , LI X , CHEN M , et al . AI enabled wireless communications with real channel measurements:channel feedback [J ] . Journal of Communications and Information Networks , 2020 , 5 ( 3 ): 310 - 317 .
LIU W , TIAN W , XIAO H , et al . EVCsiNet:eigenvector-based CSI feedback under 3GPP link-level channels [J ] . IEEE Wireless Communications Letters , 2021 , 10 ( 12 ): 2688 - 2692 .
ETSI . 5G; NR; Multiplexing and channel coding (V16.1.0;Release 16):3GPP TS 38.212 [S ] . 2020 .
0
浏览量
89
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构