浏览全部资源
扫码关注微信
1. 西安电子科技大学,陕西 西安 710071
2. 中国电信股份有限公司广州分公司,广东 广州 510620
3. 马晓亮劳模与工匠人才创新工作室,广东 广州 510620
[ "马晓亮(1973- ),男,西安电子科技大学博士生,华南理工大学工商管理学院讲席教授,中国电信股份有限公司广州分公司副总经理、高级工程师,从事数据通信、互联网运营、数据挖掘、商业呼叫中心和运营商客服等工作,主要研究方向为人工智能、自然语言处理和数据安全保护等" ]
[ "刘英(1979- ),男,现就职于中国电信股份有限公司广州分公司,主要研究方向为智能客服平台组件、自然语言处理等" ]
[ "高洁(1985- ),女,现就职于中国电信股份有限公司广州分公司,主要研究方向为机器学习、算法运用等" ]
网络出版日期:2024-01,
纸质出版日期:2024-01-20
移动端阅览
马晓亮, 刘英, 高洁. 基于联合神经网络的投诉预测模型研究[J]. 电信科学, 2024,40(1):48-58.
Xiaoliang MA, Ying LIU, Jie GAO. Research on a complaint prediction model utilizing joint neural networks[J]. Telecommunications science, 2024, 40(1): 48-58.
马晓亮, 刘英, 高洁. 基于联合神经网络的投诉预测模型研究[J]. 电信科学, 2024,40(1):48-58. DOI: 10.11959/j.issn.1000-0801.2024006.
Xiaoliang MA, Ying LIU, Jie GAO. Research on a complaint prediction model utilizing joint neural networks[J]. Telecommunications science, 2024, 40(1): 48-58. DOI: 10.11959/j.issn.1000-0801.2024006.
对影响电信运营商重复投诉的关键因素进行深入探讨,旨在提高服务质量并构建风险预测模型。基于运营商客服数据,研究采用了 Logistic 回归、BP 神经网络以及二者联合建模的方法。Logistic 回归模型确定了5个主要影响因素,预测重复投诉发生的概率,精度达到 80.0%。BP 神经网络则选取了 81个影响因素,预测精度为 90.6%。在此基础上,构建了联合模型,其精度高达 92.8%。实际应用于某省会电信运营商后,重复投诉率下降了3.2%,成效显著,为提高电信运营商服务质量、降低重复投诉率提供了有力支持,对我国电信行业发展具有重要意义。
By conducting in-depth exploration on the key factors affecting repeat complaints of telecom operators
this study aimed to improve service quality and construct a risk prediction model.Based on the operator’s customer service data
the study employed Logistic regression
BP neural network
and their combined modeling methods.The Logistic regression model identified five major influencing factors
predicting the probability of repeat complaints with an accuracy of 80.0%.The BP neural network selected 81 influencing factors
achieving a prediction accuracy of 90.6%.On this basis
a combined model was constructed with an accuracy rate of up to 92.8%.After practical application in a provincial telecom operator
the repeat complaint rate decreased by 3.2%
demonstrating a significant impact.Strong support is provided for improving the service quality of telecom operators and reducing repeat complaints
which is of great significance for the development of the telecom industry in China.
中国政府网 . 中华人民共和国消费者权益保护法 [Z ] . 2013 - 10 - 25 .
GOV . Consumer rights protection law of the National People's Congress of the People's Republic of China [Z ] . 2013 - 10 - 25 .
马晓亮 , 刘英 , 杜德泉 , 等 . 电信运营商 AI 客服平台技术研究与应用分析 [J ] . 电信科学 , 2023 , 39 ( 9 ): 141 - 152 .
MA X L , LIU Y , DU D Q , et al . Research and application analysis of artificial intelligence-based customer service platform technologies for telecom operators [J ] . Telecommunications Science , 2023 , 39 ( 9 ): 141 - 152 .
雷霆 , 陈小鹏 . 降低网络客户重复投诉率策略研究 [J ] . 信息与电脑(理论版) , 2022 , 34 ( 1 ): 208 - 210 , 215 .
LEI T , CHEN X P . Research on strategies of Xi’an Mobile to reduce repeated complaints rate of network customers [J ] . Information & Computer , 2022 , 34 ( 1 ): 208 - 210 , 215 .
韩鹏 . 强化故障全程管控有效压降重复投诉 [J ] . 通信管理与技术 , 2021 , 175 ( 5 ): 50 - 51 , 62 .
HAN P . Strengthening full-process management of faults to effectively reduce repetitive complaints [J ] . Technical & Operation Exchanges , 2021 , 175 ( 5 ): 50 - 51 , 62 .
李航 . 统计学习方法 [M ] . 北京 : 清华大学出版社 , 2012 .
LI H . Statistical learning methods [M ] . Beijing : Tsinghua University Press , 2012 .
张建锋 , 付强 , 杜金柱 . 基于 Logistic 模型的上市公司股票价格操纵预判研究 [J ] . 西安理工大学学报 , 2018 , 34 ( 2 ): 240 - 245 .
ZHANG J F , FU Q , DU J Z . Study on the manipulation anticipation of listed companies’ stock prices based on Logistic model [J ] . Journal of Xi’an University of Technology , 2018 , 34 ( 2 ): 240 - 245 .
邵志高 . 基于二元 logistic 回归模型的收入异动影响未来股票收益研究 [J ] . 湖南科技大学学报(社会科学版) , 2017 , 20 ( 5 ): 103 - 111 .
SHAO Z G . On the impact of revenue abnormal variation on future stock returns based on the binary logistic model [J ] . Joumal of Hunan University of Science & Technology (Social Science Edition) , 2017 , 20 ( 5 ): 103 - 111 .
陈蒙蒙 , 方振红 , 涂文怡 , 等 . 基于Logistic回归模型的心脏病预测模型构建及效果分析 [J ] . 医院管理论坛 , 2022 , 39 ( 2 ): 32 - 35 .
CHEN M M , FANG Z H , TU W Y , et al . Regression model effect analysis of heart disease prediction model based on logistic [J ] . Medical Management , 2022 , 39 ( 2 ): 32 - 35 .
孙敬怡 . 基于智能算法的中青年居民健康状况与疾病预警模型研究 [D ] . 天津:天津中医药大学 , 2021 .
SUN J Y . Research on health status and early warning model of disease of young and middle-aged residents based on intelligent algorithm [D ] . Tianjin:Tianjin University of Traditional Chinese Medicine , 2021 .
张艳莉 . 基于 Logistic 回归算法的企业顾客抱怨管理机制的构建 [J ] . 科技通报 , 2014 , 30 ( 5 ): 156 - 159 .
ZHANG Y L . Enterprise management mechanism for build customer complaints based on logistic regression algorithm [J ] . Bulletin of Science and Technology , 2014 , 30 ( 5 ): 156 - 159 .
庄贵军 , 朱美艳 . 顾客抱怨行为与重购意愿的logistic回归分析 [J ] . 商业经济与管理 , 2009 , 211 ( 5 ): 90 - 96 .
ZHUANG G J , ZHU M Y . Logistic regression analysis of customer complaint behavior and repurchase intention [J ] . Journal of Business Economics , 2009 , 211 ( 5 ): 90 - 96 .
罗鑫 , 张金林 . 基于多时间尺度复合深度神经网络的股票价格预测 [J ] . 武汉金融 , 2020 , 249 ( 9 ): 32 - 40 .
LUO X , ZHANG J L . Stock price prediction based on multi-time scale composite deep neural network [J ] . Wuhan Finance , 2020 , 249 ( 9 ): 32 - 40 .
唐思源 , 杨敏 , 白金牛 . 基于深度卷积神经网络的肺结节检测与识别 [J ] . 科学技术与工程 , 2019 , 19 ( 22 ): 241 - 248 .
TANG S Y , YANG M , BAI J N . Lung nodules detection and recognition based on deep convolutional neural networks [J ] . Science Technology and Engineering , 2019 , 19 ( 22 ): 241 - 248 .
周文杰 , 严建峰 , 杨璐 . 基于深度学习的用户投诉预测模型研究 [J ] . 计算机应用研究 , 2017 , 34 ( 5 ): 1428 - 1432 .
ZHOU W J , YAN J F , YANG L . Research on prediction model of complaint based on deep learning [J ] . Application Research of Computers , 2017 , 34 ( 5 ): 1428 - 1432 .
穆晓玛 . 主流客户投诉预测模型的对比与研究 [J ] . 智能计算机与应用 , 2018 , 8 ( 5 ): 100 - 102 , 105 .
MU X M . Comparison and research of several mainstream customer complaint prediction models [J ] . Intelligent Computer and Applications , 2018 , 8 ( 5 ): 100 - 102 , 105 .
周志华 . 机器学习 [M ] . 北京 : 清华大学出版社 , 2016 .
ZHOU Z H . Machine learning [M ] . Beijing : Tsinghua University Press , 2016 .
0
浏览量
158
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构