浏览全部资源
扫码关注微信
1.重庆邮电大学通信与信息工程学院,重庆 400065
2.先进网络与智能互联技术重庆市高校重点实验室,重庆 400065
3.泛在感知与互联重庆市重点实验室,重庆 400065
[ "邹虹(1970- ),女,重庆邮电大学通信与信息工程学院副教授,主要研究方向为工业物联网、光无线融合网络等。" ]
[ "卓赛(1999- ),男,重庆邮电大学通信与信息工程学院硕士生,主要研究方向为工业物联网。" ]
[ "张鸿(1987- ),男,博士,重庆邮电大学通信与信息工程学院讲师,主要研究方向为工业物联网、光无线融合网络等。" ]
[ "张明兴(1999- ),男,重庆邮电大学通信与信息工程学院硕士生,主要研究方向为工业物联网。" ]
[ "吴大鹏(1979- ),男,博士,重庆邮电大学通信与信息工程学院教授,主要研究方向为工业物联网、泛在无线网络等。" ]
收稿日期:2023-09-01,
修回日期:2023-11-20,
纸质出版日期:2024-03-20
移动端阅览
邹虹,卓赛,张鸿等.工业物联网中基于任务紧急程度的资源分配算法[J].电信科学,2024,40(03):29-38.
ZOU Hong,ZHUO Sai,ZHANG Hong,et al.Task urgency-based resource allocation algorithm in industrial Internet of things[J].Telecommunications Science,2024,40(03):29-38.
邹虹,卓赛,张鸿等.工业物联网中基于任务紧急程度的资源分配算法[J].电信科学,2024,40(03):29-38. DOI: 10.11959/j.issn.1000-0801.2024018.
ZOU Hong,ZHUO Sai,ZHANG Hong,et al.Task urgency-based resource allocation algorithm in industrial Internet of things[J].Telecommunications Science,2024,40(03):29-38. DOI: 10.11959/j.issn.1000-0801.2024018.
工业物联网中任务的生成通常具有连续性和周期性,并且任务对时延要求很高,这给系统成本带来了挑战。为应对这一挑战,提出了一种基于任务紧急程度的成本最小化资源分配算法。通过遗传算法优化任务的卸载策略和系统的资源分配策略,对于卸载的任务,根据任务的紧急程度进行调度,并在满足时延要求的前提下计算任务的最优发射功率。仿真结果表明,所提算法有效改善了系统总能耗成本。
In the industrial Internet of things
the generation of tasks is observed to exhibit both continuity and periodicity
along with stringent latency requirements. These characteristics posed challenges to system's cost-efficiency. To address these challenges
a cost minimization resource allocation algorithm based on the urgency of tasks was proposed. By employing a genetic algorithm
the task offloading strategy and the system's resource allocation strategy were optimized. For offloaded tasks
they were scheduled according to their level of urgency. Additionally
the optimal transmission power for each task was calculated to meet latency constraints. Simulation results indicate that the proposed algorithm effectively reduces the overall energy cost of the system.
QIU T , CHI J C , ZHOU X B , et al . Edge computing in industrial Internet of things: architecture, advances and challenges [J ] . IEEE Communications Surveys & Tutorials , 2020 , 22 ( 4 ): 2462 - 2488 .
SISINNI E , SAIFULLAH A , HAN S , et al . Industrial Internet of things: challenges, opportunities, and directions [J ] . IEEE Transactions on Industrial Informatics , 2018 , 14 ( 11 ): 4724 - 4734 .
LIANG F , YU W , LIU X , et al . Toward edge-based deep learning in industrial Internet of things [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 5 ): 4329 - 4341 .
王峰 , 于青民 , 黄颖 , 等 . 工业互联网网络关键技术与发展研究 [J ] . 电信科学 , 2022 , 38 ( 7 ): 106 - 113 .
WANG F , YU Q M , HUANG Y , et al . Research on key technology and development of industrial Internet network [J ] . Telecommunications Science , 2022 , 38 ( 7 ): 106 - 113 .
HAN S , MAO H Z , DALLY W J . Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding [EB ] . 2015: arXiv: 1510.00149 .
WU W , YANG P , ZHANG W T , et al . Accuracy-guaranteed collaborative DNN inference in industrial IoT via deep reinforcement learning [J ] . IEEE Transactions on Industrial Informatics , 2021 , 17 ( 7 ): 4988 - 4998 .
赵尚维康 . 工业物联网中基于边缘计算和强化学习的计算卸载方法研究 [D ] . 南京 : 南京邮电大学 , 2022 .
ZHAO S W K . Research on computing unloading method based on edge computing and reinforcement learning in industrial Internet of things [D ] . Nanjing : Nanjing University of Posts and Telecommunications , 2022 .
FAN W H , LI S M , LIU J , et al . Joint task offloading and resource allocation for accuracy-aware machine-learning-based IIoT applications [J ] . IEEE Internet of Things Journal , 2023 , 10 ( 4 ): 3305 - 3321 .
YANG B , CAO X L , LI X F , et al . Mobile-edge-computing-based hierarchical machine learning tasks distribution for IIoT [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 3 ): 2169 - 2180 .
FAN W H , CHEN Z Y , HAO Z B , et al . DNN deployment, task offloading, and resource allocation for joint task inference in IIoT [J ] . IEEE Transactions on Industrial Informatics , 2023 , 19 ( 2 ): 1634 - 1646 .
ZHANG W T , YANG D , PENG H X , et al . Deep reinforcement learning based resource management for DNN inference in industrial IoT [J ] . IEEE Transactions on Vehicular Technology , 2021 , 70 ( 8 ): 7605 - 7618 .
绳韵 , 许晨 , 郑光远 . 基于NOMA的超密集MEC网络任务卸载和资源分配方案 [J ] . 电信科学 , 2022 , 38 ( 2 ): 35 - 46 .
SHENG Y , XU C , ZHENG G Y . Task offloading and resource allocation in NOMA-based ultra-dense MEC networks [J ] . Telecommunications Science , 2022 , 38 ( 2 ): 35 - 46 .
WANG K Z , YANG K , MAGURAWALAGE C S . Joint energy minimization and resource allocation in C-RAN with mobile cloud [J ] . IEEE Transactions on Cloud Computing , 2018 , 6 ( 3 ): 760 - 770 .
NEELY M J . Stochastic network optimization with application to communication and queueing systems [M ] . Cham : Springer International Publishing , 2010 .
ZHANG W T , YANG D , WANG H C . Data-driven methods for predictive maintenance of industrial equipment: a survey [J ] . IEEE Systems Journal , 2019 , 13 ( 3 ): 2213 - 2227 .
LUO J H , WU J X , LIN W Y . ThiNet: a filter level pruning method for deep neural network compression [C ] // Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV) . Piscataway : IEEE Press , 2017 : 5068 - 5076 .
0
浏览量
7
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构