浏览全部资源
扫码关注微信
[ "刘艺(2000- ),女,华北电力大学电气与电子工程学院硕士生,主要研究方向为能源互联网信息通信技术" ]
[ "武昕(1986- ),女,博士,华北电力大学电气与电子工程学院副教授、博士生导师,主要研究方向为能源互联网信息通信技术" ]
网络出版日期:2024-02,
纸质出版日期:2024-02-20
移动端阅览
刘艺, 武昕. 面向温控负荷聚合调控的云边端网络资源分配[J]. 电信科学, 2024,40(2):124-140.
Yi LIU, Xin WU. Cloud edge end network resource allocation for thermostatically controlled load aggregation regulation[J]. Telecommunications science, 2024, 40(2): 124-140.
刘艺, 武昕. 面向温控负荷聚合调控的云边端网络资源分配[J]. 电信科学, 2024,40(2):124-140. DOI: 10.11959/j.issn.1000-0801.2024029.
Yi LIU, Xin WU. Cloud edge end network resource allocation for thermostatically controlled load aggregation regulation[J]. Telecommunications science, 2024, 40(2): 124-140. DOI: 10.11959/j.issn.1000-0801.2024029.
温控负荷是以空调和电热水器等为一类控制温度调节的柔性负荷,作为一类重要的需求侧资源,对负荷集群进行灵活的聚合调控可以充分调动清洁能源消纳能力,保障电网供需平衡。由于温控负荷常见于商业写字楼及居民区内,可对其采用较为稳定的控制与传输方式,故引入高效的分层分级传输网络,实现负荷与电网之间的数据传输与信息交互,灵活、实时、精准地利用负荷集群的调节潜力。首先提出了一种“中心云-边缘云-区域控制器-温控负荷”的云边端协同通信组网架构。接着,针对端-边部分,考虑不同聚合控制任务的需求,利用改进的聚类算法对任务进行分类,以减小传输开销。针对边-云协同部分,构建了考虑时延、能耗和误码率的传输开销效用函数,设计了基于稳定匹配和注水算法的子信道资源分配算法,并利用二进制粒子群算法解决了任务上传决策问题。最后,通过仿真验证了本文所提模型的有效性,并进行了对比实验。
Thermostatically controlled load is a flexible load that controls temperature regulation
such as air conditioning and electric water heaters.As a crucial demand side resource
flexible aggregation and regulation of load clusters can fully mobilize clean energy consumption capacity and ensure the balance between supply and demand of the power grid.Due to the common occurrence of thermostatically controlled loads in commercial office buildings and residential areas
a relatively stable control and transmission method can be adopted.Therefore
an efficient hierarchical transmission network is introduced to achieve data transmission and information interaction between loads and the power grid
and to flexibly
real-time
and accurately utilize the adjustable potential of load clusters.Firstly
an information interaction architecture of load IoT which structured “central cloud-edge cloud-regional load controller-thermostatically controlled load”was proposed.Then
for the “end edge”part
considering the requirements of different aggregation control tasks
an improved clustering algorithm was used to classify the tasks and reduce transmission overhead.For the “end-side” part
an improved clustering algorithm was used to optimize the transmission distance.For the edge-cloud collaboration part
a subchannel resource allocation algorithm was designed based on stable matching and water injection algorithms.The binary particle swarm optimization algorithm was used to solve the task upload decision problem.Finally
the effectiveness of the proposed model and algorithm is verified through simulation
and comparative experiments are also conducted.
王彩霞 , 时智勇 , 梁志峰 , 等 . 新能源为主体电力系统的需求侧资源利用关键技术及展望 [J ] . 电力系统自动化 , 2021 , 45 ( 16 ): 37 - 48 .
WANG C X , SHI Z Y , LIANG Z F , et al . Key technologies and prospects of demand-side resource utilization for power systems dominated by renewable energy [J ] . Automation of Electric Power Systems , 2021 , 45 ( 16 ): 37 - 48 .
王蓉 , 赵斌 , 刘文章 , 等 . 考虑高比例新能源消纳的微能源网日前经济调度 [J ] . 现代电力 , 2022 , 39 ( 2 ): 236 - 245 .
WANG R , ZHAO B , LIU W Z , et al . Day-ahead economic dispatch of micro-energy grid considering high proportion of renewable energy consumption [J ] . Modern Electric Power , 2022 , 39 ( 2 ): 236 - 245 .
杨昆达 , 沈晓东 . 基于碳交易机制和需求响应的配电网重构研究 [J ] . 电网与清洁能源 , 2023 , 39 ( 4 ): 47 - 53 .
YANG K D , SHEN X D . Research on distribution network reconfiguration based on carbon trading mechanism and demand response [J ] . Power System and Clean Energy , 2023 , 39 ( 4 ): 47 - 53 .
孙毅 , 黄绍模 , 李泽坤 , 等 . 考虑时域特性的异构温控负荷联合调控策略 [J ] . 电网技术 , 2020 , 44 ( 12 ): 4722 - 4734 .
SUN Y , HUANG S M , LI Z K , et al . Joint control strategy of heterogeneous temperature control load considering time domain characteristics [J ] . Power System Technology , 2020 , 44 ( 12 ): 4722 - 4734 .
崔屹峰 , 李珍国 , 魏思雨 , 等 . 面向需求响应的温控负荷单元随机选择模型 [J ] . 电力系统自动化 , 2021 , 45 ( 19 ): 126 - 132 .
CUI Y F , LI Z G , WEI S Y , et al . Random selection model of thermostatically controlled load units for demand response [J ] . Automation of Electric Power Systems , 2021 , 45 ( 19 ): 126 - 132 .
王蓓蓓 , 胡晓青 , 顾伟扬 , 等 . 分层控制架构下大规模空调负荷参与调峰的分散式协同控制策略 [J ] . 中国电机工程学报 , 2019 , 39 ( 12 ): 3514 - 3528 .
郭然龙 , 邢海军 , 谢宝江 , 等 . 计及灵活性供需的多场景分布式电源双层规划 [J ] . 现代电力 , 2023 , 40 ( 1 ): 8 - 17 .
GUO R L , XING H J , XIE B J , et al . A Bi-level programming of multi scenario distributed generation considering flexible supply and demand [J ] . Modern Electric Power , 2023 , 40 ( 1 ): 8 - 17 .
吴柳青 , 朱晓荣 . 基于边-端协同的任务卸载资源分配联合优化算法 [J ] . 电信科学 , 2020 , 36 ( 3 ): 42 - 52 .
WU L Q , ZHU X R . Joint optimization algorithm for task offloading resource allocation based on edge-end collaboration [J ] . Telecommunications Science , 2020 , 36 ( 3 ): 42 - 52 .
严杰 , 宋荣方 . 多载波多用户下行 NOMA 系统的资源分配算法 [J ] . 电信科学 , 2019 , 35 ( 11 ): 1 - 8 .
YAN J , SONG R F . Resource allocation algorithm for the downlink of multi-carrier and multi-user NOMA systems [J ] . Telecommunications Science , 2019 , 35 ( 11 ): 1 - 8 .
WU X , YAO L J , PI T X , et al . Virtual-real interaction control of hybrid load system for low-carbon energy services [J ] . Applied Energy , 2023 ,330:120319.
WU X , LIANG K X , JIAO D . Air conditioner group collaborative method under multi-layer information interaction structure [J ] . Energy , 2019 ,186:115851.
WU X , YOU L , WU R F , et al . Management and control of load clusters for ancillary services using Internet of electric loads based on cloud–edge–end distributed computing [J ] . IEEE Internet of Things Journal , 2022 , 9 ( 19 ): 18267 - 18279 .
戴剑丰 , 阎诚 , 汤奕 . 基于分布式通信架构的温控负荷参与电力系统频率调控模型 [J ] . 电网技术 , 2023 , 47 ( 5 ): 1810 - 1821 .
DAI J F , YAN C , TANG Y . Model of temperature control load participating in frequency regulation of power system based on distributed communication architecture [J ] . Power System Technology , 2023 , 47 ( 5 ): 1810 - 1821 .
张巍 , 王丹 . 基于云边协同的电动汽车实时需求响应调度策略 [J ] . 电网技术 , 2022 , 46 ( 4 ): 1447 - 1458 .
ZHANG W , WANG D . Real-time demand response scheduling strategy for electric vehicles based on cloud edge collaboration [J ] . Power System Technology , 2022 , 46 ( 4 ): 1447 - 1458 .
何金骆 . 面向电力需求响应的温控负荷控制与通信资源分配策略 [D ] . 秦皇岛:燕山大学 , 2020 .
HE J L . Thermostatically load control and communication resource allocation strategy for power demand response [D ] . Qinhuangdao:Yanshan University , 2020 .
黄冬梅 , 徐琦 , 孙锦中 , 等 . 基于改进混合粒子群算法和匹配理论的无人机电力巡检卸载策略 [J ] . 计算机应用研究 , 2023 , 40 ( 7 ): 2111 - 2116 .
HUANG D M , XU Q , SUN J Z , et al . Power inspection and unloading strategy of UAV based on improved hybrid particle swarm algorithm and matching theory [J ] . Application Research of Computers , 2023 , 40 ( 7 ): 2111 - 2116 .
绳韵 , 许晨 , 郑光远 . 基于NOMA的超密集MEC网络任务卸载和资源分配方案 [J ] . 电信科学 , 2022 , 38 ( 2 ): 35 - 46 .
SHENG Y , XU C , ZHENG G Y . Task offloading and resource allocation in NOMA-based ultra-dense MEC networks [J ] . Telecommunications Science , 2022 , 38 ( 2 ): 35 - 46 .
范楠欣 . 移动边缘计算网络中 D2D 辅助的计算卸载策略研究 [D ] . 北京:北京邮电大学 , 2021 .
FAN N X . Research on computation offloading strategy in D2D-assisted mobile edge computing networks [D ] . Beijing:Beijing University of Posts and Telecommunications , 2021 .
龙恳 , 李伟 , 鲁江丽 , 等 . 基于匹配理论的 NOMA 异构网络资源分配算法 [J ] . 计算机工程 , 2021 , 47 ( 1 ): 165 - 171 .
LONG K , LI W , LU J L , et al . Resource allocation algorithm for NOMA heterogeneous network based on matching theory [J ] . Computer Engineering , 2021 , 47 ( 1 ): 165 - 171 .
0
浏览量
137
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构