浏览全部资源
扫码关注微信
中国移动通信有限公司研究院,北京 100053
[ "祝淑琼(1994- ),女,中国移动通信有限公司研究院助理工程师,主要研究方向为算力度量和边缘计算技术。" ]
[ "徐青青(1987- ),女,中国移动通信有限公司研究院工程师,主要研究方向为行业智能和新型计算技术。" ]
[ "李小涛(1987- ),男,博士,中国移动通信有限公司研究院高级工程师,主要研究方向为物联网语义和新型计算技术。" ]
[ "陈维(1960- ),男,中国移动通信有限公司研究院首席科学家,主要研究方向为机器智能和边缘计算。" ]
收稿日期:2023-12-04,
修回日期:2024-03-28,
纸质出版日期:2024-04-20
移动端阅览
祝淑琼,徐青青,李小涛等.算力度量与任务调度:物联网端侧设备策略研究[J].电信科学,2024,40(04):122-138.
ZHU Shuqiong,XU Qingqing,LI Xiaotao,et al.Computational measurement and task scheduling: a study on IoT edge device strategies[J].Telecommunications Science,2024,40(04):122-138.
祝淑琼,徐青青,李小涛等.算力度量与任务调度:物联网端侧设备策略研究[J].电信科学,2024,40(04):122-138. DOI: 10.11959/j.issn.1000-0801.2024084.
ZHU Shuqiong,XU Qingqing,LI Xiaotao,et al.Computational measurement and task scheduling: a study on IoT edge device strategies[J].Telecommunications Science,2024,40(04):122-138. DOI: 10.11959/j.issn.1000-0801.2024084.
随着移动通信、人工智能等技术的发展,智能设备和数据呈现爆炸式增长的态势,物联网(Internet of things,IoT)场景对算力、时延和能耗提出了更高的要求。算力网络通过对计算节点进行互联,基于统一的算力度量标准和任务调度策略,实现算力资源的共享和高效利用,为提升物联网系统的计算性能提供了新思路。但是由于物联网设备种类繁多、网络连接方式各异且对功耗敏感,当前以计算能力为主的算力度量方法无法满足物联网设备协作的需求。此外,目前算力网络的计算任务调度方法普遍依赖中心化的网络路由节点或管理平台,不能适应物联网设备分布离散和资源受限的特点。针对上述问题,提出了一种面向物联网端侧设备的新型算力度量架构,为异构物联网端侧算力资源提供计算、存储、通信、功耗和电源的统一度量。在此基础上,提出了一种分布式的任务调度策略,实现离散异构算力资源与业务场景需求的智能匹配,支持物联网端侧设备的资源管理和任务调度。选取智慧家庭场景对提出的算力度量架构进行评估,结果表明,该架构可以有效地实现端侧设备算力资源的共享和调度,提升物联网计算效率,减少能源消耗。
The rapid advancement of mobile communications and artificial intelligence has catalyzed an exponential increase in intelligent devices and data generation. This surge necessitates enhance the computational resource capabilities
particularly in the Internet of things (IoT) environments
where there are pressing demand for improved resource management in terms of computation
latency
and energy efficiency. The concept of a computility network
which leverages interconn
ected computing nodes for resource sharing and optimization based on a unified measurement standard and task scheduling strategy
offers a promising solution for augmenting IoT systems
'
computational performance. However
the current models for computing resource measurement
predominantly focused on computational capacity
fall short in addressing the diverse and collaborative needs of various IoT devices. These devices often differ in network connectivity modes and exhibit sensitivity to power consumption. Moreover
prevalent task scheduling methods in computility network predominantly rely on centralized network routing nodes or management platforms. Such approaches are not well-suited for the unique characteristics of IoT devices
which are typically dispersed and constrained in resources. To address these challenges
a novel architecture for computing resource measurement tailored to IoT devices was introduced. A comprehensive and unified framework for measuring diverse aspects of computing resources in heterogeneous IoT environments was provided
including computation
storage
communication
power consumption
and power supply metrics. Building on this foundation
a distributed task scheduling strategy that intelligently aligned the disparate computing resources with specific business scenario requirements was proposed
thereby facilitating efficient resource management and task scheduling for IoT devices. To validate the effectiveness of the proposed architecture
it was applied to a smart home scenario. The empirical results demonstrate that the proposed architecture significantly enhances the sharing and scheduling of computing resources among IoT devices. It elevates the overall efficiency of IoT computing while concurrently reducing energy consumption
thereby offering a robust solution to the evolving demands of IoT systems.
杨光 , 王玉申 , 姚洁 , 等 . 算力时代下的算力服务需求研究 [J ] . 中国新通信 , 2023 , 25 ( 1 ): 39 - 41 .
YANG G , WANG Y S , YAO J , et al . Research on computing service demand in computing era [J ] . China New Telecommunications , 2023 , 25 ( 1 ): 39 - 41 .
中国移动通信集团有限公司 . 算力网络白皮书 [R ] . 2021 .
China Mobile Communications Group Co., Ltd . Computing force network technology white paper [R ] . 2021 .
姚惠娟 , 陆璐 , 段晓东 . 算力感知网络架构与关键技术 [J ] . 中兴通讯技术 , 2021 , 27 ( 3 ): 7 - 11 .
YAO H J , LU L , DUAN X D . Architecture and key technologies for computing-aware networking [J ] . ZTE Technology Journal , 2021 , 27 ( 3 ): 7 - 11 .
何涛 , 杨振东 , 曹畅 , 等 . 算力网络发展中的若干关键技术问题分析 [J ] . 电信科学 , 2022 , 38 ( 6 ): 62 - 70 .
HE T , YANG Z D , CAO C , et al . Analysis of some key technical problems in the development of computing power network [J ] . Telecommunications Science , 2022 , 38 ( 6 ): 62 - 70 .
乔楚 . 算力度量与算网资源调度思路分析 [J ] . 通信技术 , 2022 , 55 ( 9 ): 1165 - 1170 .
QIAO C . Analysis of the computing power measurement and resource scheduling on CPN [J ] . Communications Technology , 2022 , 55 ( 9 ): 1165 - 1170 .
ITU-T . Computing power network-framework and architecture: Y.2501 [S ] . 2021 .
CCSA . 算力网络总体技术要求 [R ] . 2021 .
CCSA . Computing power network overall technical requirements [R ] . 2021 .
CCSA . 面向算网融合的算力度量与算力建模研究 [R ] . 2021 .
CCSA . Research on computing power measurement and modeling for computing network fusion [R ] . 2021
李建飞 , 曹畅 , 李奥 , 等 . 算力网络中面向业务体验的算力建模 [J ] . 中兴通讯技术 , 2020 , 26 ( 5 ): 34 - 38, 52 .
LI J F , CAO C , LI A , et al . Computing power modeling for business experience in computing power network [J ] . ZTE Technology Journal , 2020 , 26 ( 5 ): 34 - 38, 52 .
柴若楠 , 郜帅 , 兰江雨 , 等 . 算力网络中高效算力资源度量方法 [J ] . 计算机研究与发展 , 2023 , 60 ( 4 ): 763 - 771 .
CHAI R N , GAO S , LAN J Y , et al . Efficient computing resource metric method in computing-first network [J ] . Journal of Computer Research and Development , 2023 , 60 ( 4 ): 763 - 771 .
郭亮 , 吴美希 , 王峰 , 等 . 数据中心算力评估: 现状与机遇 [J ] . 信息通信技术与政策 , 2021 ( 2 ): 79 - 86 .
GUO L , WU M X , WANG F , et al . Research on evaluation of computing power and efficiency in data center: status and opportunities [J ] . Information and Communications Technology and Policy , 2021 ( 2 ): 79 - 86 .
姜海洋 , 李勇 . 端边云场景下的算力度量方法 [J ] . 电信工程技术与标准化 , 2023 , 36 ( 7 ): 79 - 83 .
JIANG H Y , LI Y . Explore the correlation method between computing power measurement and service deployment in the device-edge-cloud collaboration scenario [J ] . Telecom Engineering Technics and Standardization , 2023 , 36 ( 7 ): 79 - 83 .
杜宗鹏 , 李志强 , 陆璐 . 算力网络四面三级算力度量技术体系 [J ] . 中兴通讯技术 , 2023 , 29 ( 4 ): 8 - 13 .
DU Z P , LI Z Q , LU L . Three-level and four-aspect computing measurement system in computing force network [J ] . ZTE Technology Journal , 2023 , 29 ( 4 ): 8 - 13 .
LI J C , LYU H , LEI B , et al . A computing power resource modeling approach for computing power network [C ] // Proceedings of the 2022 International Conference on Computer Communications and Networks (ICCCN) . Piscataway : IEEE Press , 2022 : 1 - 2 .
夏天豪 , 夏长清 , 潘昊 , 等 . 基于强化学习的算力资源度量方法 [J ] . 燕山大学学报 , 2023 , 47 ( 3 ): 246 - 254 .
XIA T H , XIA C Q , PAN H , et al . Computational power resource measurement method based on reinforcement learning [J ] . Journal of Yanshan University , 2023 , 47 ( 3 ): 246 - 254 .
周舸帆 , 雷波 . 算力网络中基于算力标识的算力服务需求匹配 [J ] . 数据与计算发展前沿 , 2022 , 4 ( 6 ): 20 - 28 .
ZHOU G F , LEI B . Computing service demand matching based on computing power identification in computing power network [J ] . Frontiers of Data & Computing , 2022 , 4 ( 6 ): 20 - 28 .
庞冉 , 易昕昕 , 辛亮 , 等 . 算力网络路由调度技术研究 [J ] . 电信科学 , 2023 , 39 ( 8 ): 149 - 156 .
PANG R , YI X X , XIN L , et al . Research on routing scheduling technology of computing power network [J ] . Telecommunications Science , 2023 , 39 ( 8 ): 149 - 156 .
中国信息通信研究院 . 中国算力发展指数白皮书 [R ] . 2021 .
China Academy of Information and Communications Technology . White paper on China computing power development index [R ] . 2021 .
中国人工智能产业发展联盟 . 中国人工智能产业发展联盟 AI 芯片技术选型目录 [EB ] . 2020 .
Artificial Intelligence Industry Alliance . Artificial Intelligence Industry Alliance AI chip technology selection catalog [EB ] . 2020 .
0
浏览量
10
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构