浏览全部资源
扫码关注微信
天津财经大学理工学院,天津 300222
[ "程风云(1998- ),女,天津财经大学理工学院硕士生,主要研究方向为模式识别、调制识别。" ]
[ "周金(1981- ),女,博士,天津财经大学理工学院副教授、硕士生导师,主要研究方向为信号识别、智能信息对抗。" ]
收稿日期:2023-10-01,
修回日期:2024-04-07,
纸质出版日期:2024-04-20
移动端阅览
程风云,周金.信号增强网络驱动的调制识别[J].电信科学,2024,40(04):139-150.
CHENG Fengyun,ZHOU Jin.Modulation recognition driven by signal enhancement[J].Telecommunications Science,2024,40(04):139-150.
程风云,周金.信号增强网络驱动的调制识别[J].电信科学,2024,40(04):139-150. DOI: 10.11959/j.issn.1000-0801.2024090.
CHENG Fengyun,ZHOU Jin.Modulation recognition driven by signal enhancement[J].Telecommunications Science,2024,40(04):139-150. DOI: 10.11959/j.issn.1000-0801.2024090.
现有基于深度学习的调制识别在训练阶段需要大量IQ信号样本,而复杂电磁环境中很难获取大量样本,导致基于深度学习的调制识别算法泛化性能下降。针对网络泛化能力差的问题,提出了一种基于信号增强的调制识别(signal enhancement based modulation recognition,SEBMR)算法。首先,设计了捕获IQ信号全局特征的特征提取及重构模块;其次,提出了基于辅助分类生成对抗网络(auxiliary classifier generative adversarial network,ACGAN)的IQ信号增强网络,实现了样本数量及质量的双重增强;最后,利用支持向量机算法实现了调制方式识别分类。为了实现对复杂信道下调试信号的识别,训练时采用表征全局特征的重构信号,测试时采用经历无线衰落的IQ基带信号。实验结果表明,提出的方法相比现有的基于长短期记忆(LSTM)网络、卷积神经网络(CNN)、注意力机制等识别方法,在小样本训练集、衰落信道环境下可获得更优的识别准确度。
The existing modulation recognition algorithms based on deep learning theory require a large number of IQ signal samples during the training phase. It is difficult to obtain a large number of samples in complex electromagnetic environments
resulting in a decrease in the generalization performance of modulation recognition algorithms based on deep learning. A signal enhancement based modulation recognition (SEBMR) algorithm was proposed to address the issue of poor network generalization ability. Firstly
a feature extraction and reconstruction module was designed to capture the global features of IQ signals. Secondly
an IQ signal enhancement network based on auxiliary classifier generative adversarial network (ACGAN) was proposed to achieve dual enhancement of sample quantity and quality. Finally
the support vector machine algorithm was employed to achieve modulation recognition and classification. To achieve recognition of debugging signals in complex channels
reconstructed signals representing global features were for training
and IQ baseband signals which experienced wireless fading were used for testing. The experimental results show that the proposed method can achieve better recognition accuracy performance in small sample training sets and fading channel environments compared to existing recognition methods based on long short-term memory (LSTM)
convolutional neural network (CNN)
attention mechanism
etc.
邵凯 , 朱苗苗 , 王光宇 . 基于生成对抗与卷积神经网络的调制识别方法 [J ] . 系统工程与电子技术 , 2022 , 44 ( 3 ): 1036 - 1043 .
SHAO K , ZHU M M , WANG G Y . Modulation recognition method based on generative adversarial and convolutional neural network [J ] . Systems Engineering and Electronics , 2022 , 44 ( 3 ): 1036 - 1043 .
郭业才 , 姚文强 . 基于信噪比分类网络的调制信号分类识别算法 [J ] . 电子与信息学报 , 2022 , 44 ( 10 ): 3507 - 3515 .
GUO Y C , YAO W Q . Modulation signal classification and recognition algorithm based on signal to noise ratio classification network [J ] . Journal of Electronics & Information Technology , 2022 , 44 ( 10 ): 3507 - 3515 .
CHEN W H , XIE Z C , MA L , et al . A faster maximum-likelihood modulation classification in flat fading non-gaussian channels [J ] . IEEE Communications Letters , 2019 , 23 ( 3 ): 454 - 457 .
CHAVALI V G , DA SILVA C R C M . Maximum-likelihood classification of digital amplitude-phase modulated signals in flat fading non-gaussian channels [J ] . IEEE Transactions on Communications , 2011 , 59 ( 8 ): 2051 - 2056 .
MENG F , CHEN P , WU L N , et al . Automatic modulation classification: a deep learning enabled approach [J ] . IEEE Transactions on Vehicular Technology , 2018 , 67 ( 11 ): 10760 - 10772 .
AZZA M A , EL MOUSSATI A , MOUSSAOUI O . Implementation of an automatic modulation recognition system on a software defined radio platform [C ] // Proceedings of the 2018 International Symposium on Advanced Electrical and Communication Technologies (ISAECT) . Piscataway : IEEE Press , 2018 : 1 - 4 .
安泽亮 , 张天骐 , 马宝泽 , 等 . 基于一维CNN的多入多出OSTBC信号协作调制识别 [J ] . 通信学报 , 2021 , 42 ( 7 ): 84 - 94 .
AN Z L , ZHANG T Q , MA B Z , et al . Cooperative modulation recognition based on one-dimensional convolutional neural network for MIMO-OSTBC signal [J ] . Journal on Communications , 2021 , 42 ( 7 ): 84 - 94 .
张兆军 , 高银锐 , 邱天爽 , 等 . 基于双曲正切特征和双特征融合神经网络的调制方式识别 [J ] . 大连理工大学学报 , 2023 , 63 ( 1 ): 93 - 101 .
ZHANG Z J , GAO Y R , QIU T S , et al . Automatic modulation classification based on hyperbolic-tangent-based patterns and dual-feature-fusion neural network [J ] . Journal of Dalian University of Technology , 2023 , 63 ( 1 ): 93 - 101 .
PENG Y , GUO L T , YAN J , et al . Automatic modulation classification using deep residual neural network with masked modeling for wireless communications [J ] . Drones , 2023 , 7 ( 6 ): 390 .
PATHAK N K , BAJAJ V . Automatic modulation classification using bimodal parallel multichannel deep learning framework for spatial multiplexing MIMO system [J ] . Physical Communication , 2023 , 59 : 102071 .
HUANG L , ZHANG Y , PAN W J , et al . Visualizing deep learning-based radio modulation classifier [J ] . IEEE Transactions on Cognitive Communications and Networking , 2021 , 7 ( 1 ): 47 - 58 .
WANG T , HOU Y H , ZHANG H Y , et al . Deep learning based modulation recognition with multi-cue fusion [J ] . IEEE Wireless Communications Letters , 2021 , 10 ( 8 ): 1757 - 1760 .
WEI T , LI Z , BI D , et al . Adaptive multi-dimensional shrinkage block for automatic modulation recognition [J ] . IEEE Communications Letters , 2023 , 10 ( 11 ): 2968 - 2972 .
王晓波 , 尹俊平 , 徐岩 . 基于鲁棒损失函数的标签有噪信号调制方式识别 [J ] . 计算物理 , 2022 , 39 ( 4 ): 386 - 394 .
WANG X B , YIN J P , XU Y . Robust loss functions for signal modulation recognition with noise labels [J ] . Chinese Journal of Computational Physics , 2022 , 39 ( 4 ): 386 - 394 .
曹家乐 , 李亚利 , 孙汉卿 , 等 . 基于深度学习的视觉目标检测技术综述 [J ] . 中国图象图形学报 , 2022 , 27 ( 6 ): 1697 - 1722 .
CAO J L , LI Y L , SUN H Q , et al . A survey on deep learning based visual object detection [J ] . Journal of Image and Graphics , 2022 , 27 ( 6 ): 1697 - 1722 .
吴博 , 梁循 , 张树森 , 等 . 图神经网络前沿进展与应用 [J ] . 计算机学报 , 2022 , 45 ( 1 ): 35 - 68 .
WU B , LIANG X , ZHANG S S , et al . Advances and applications in graph neural network [J ] . Chinese Journal of Computers , 2022 , 45 ( 1 ): 35 - 68 .
GERASYOV M , MAKAROV I . Dealing with sparse rewards using graph neural networks [J ] . IEEE Access , 2023 ( 11 ): 89180 - 89187 .
周金 , 李玉芝 , 李斌 . 小样本图像处理方法赋能的宽带频谱感知 [J ] . 电子与信息学报 , 2023 , 45 ( 3 ): 1102 - 1110 .
ZHOU J , LI Y Z , LI B . Image processing-driven spectrum sensing with small training samples [J ] . Journal of Electronics & Information Technology , 2023 , 45 ( 3 ): 1102 - 1110 .
WANG H , WANG B , WANG R , et al . Modulation recognition method for underwater acoustic communication signal based on relation network under small sample set [C ] // Proceedings of 2021 IEEE 21st International Conference on Communication Technology (ICCT) . Piscataway : IEEE Press , 2021 : 1287 - 1291 .
庞伊琼 , 许华 , 蒋磊 , 等 . 基于元学习的小样本调制识别算法 [J ] . 空军工程大学学报 , 2022 , 23 ( 5 ): 77 - 82, 89 .
PANG Y Q , XU H , JIANG L , et al . A few-shot modulation recognition algorithm based on meta-learning [J ] . Journal of Air Force Engineering University , 2022 , 23 ( 5 ): 77 - 82, 89 .
ODENA A , OLAH C , SHLENS J . Conditional image synthesis with auxiliary classifier GANs [J ] . arXiv preprint , 2016 , arXiv: 1610.09585 .
RAJENDRAN S , MEERT W , GIUSTINIANO D , et al . Deep learning models for wireless signal classification with distributed low-cost spectrum sensors [J ] . IEEE Transactions on Cognitive Communications and Networking , 2018 , 4 ( 3 ): 433 - 445 .
WEST N E , O'SHEA T . Deep architectures for modulation recognition [C ] // Proceedings of the 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN) . Piscataway : IEEE Press , 2017 : 1 - 6 .
NJOKU J N , MOROCHO-CAYAMCELA M E , LIM W . CGDNet: efficient hybrid deep learning model for robust automatic modulation recognition [J ] . IEEE Networking Letters , 2021 , 3 ( 2 ): 47 - 51 .
XU J L , LUO C B , PARR G , et al . A spatiotemporal multi-channel learning framework for automatic modulation recognition [J ] . IEEE Wireless Communications Letters , 2020 , 9 ( 10 ): 1629 - 1632 .
0
浏览量
18
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构