浏览全部资源
扫码关注微信
1.江苏移动信息系统集成有限公司,江苏 南京 210013
2.南京邮电大学通信与信息工程学院,江苏 南京 210003
3.中国移动通信集团江苏有限公司,江苏 南京 210013
[ "王晔(1987- ),男,博士,江苏移动信息系统集成有限公司技术总监、工程师,主要研究方向为移动蜂窝技术、车路协同、算力网络、工业互联网。" ]
[ "王逸飞(2000- ),男,南京邮电大学硕士生,主要研究方向为网络切片、资源调度等。" ]
[ "陈康(1998- ),男,南京邮电大学硕士生,主要研究方向为无线通信、接入网切片技术等。" ]
[ "朱晓荣(1977- ),女,南京邮电大学教授、博士生导师,主要研究方向为5G/6G通信系统、物联网、区块链等。" ]
[ "童恩(1971- ),男,博士,中国移动通信集团江苏有限公司首席专家、正高级工程师,主要研究方向为移动蜂窝技术、物联网、车联网、大数据等。" ]
[ "徐语菲(1997- ),女,现就职于江苏移动信息系统集成有限公司,主要研究方向为工业互联网。" ]
收稿日期:2023-11-26,
修回日期:2024-04-20,
纸质出版日期:2024-05-20
移动端阅览
王晔,王逸飞,陈康等.6G网络任务卸载与细粒度切片资源调度联合优化算法[J].电信科学,2024,40(05):86-99.
WANG Ye,WANG Yifei,CHEN Kang,et al.Joint optimization algorithm for 6G network task offloading and fine-grained slice resource scheduling[J].Telecommunications Science,2024,40(05):86-99.
王晔,王逸飞,陈康等.6G网络任务卸载与细粒度切片资源调度联合优化算法[J].电信科学,2024,40(05):86-99. DOI: 10.11959/j.issn.1000-0801.2024144.
WANG Ye,WANG Yifei,CHEN Kang,et al.Joint optimization algorithm for 6G network task offloading and fine-grained slice resource scheduling[J].Telecommunications Science,2024,40(05):86-99. DOI: 10.11959/j.issn.1000-0801.2024144.
针对未来全域、全场景多样化的业务需求,6G网络需要提供场景化、个性化的服务能力。针对未来细粒度业务服务质量保障问题,提出了6G网络任务卸载与细粒度切片资源调度联合优化算法,联合考虑多MEC的计算卸载和网络切片的资源调度,在有限的资源内,最小化任务的执行时延和能耗成本,并采用异步训练的A3C强化学习算法进行求解。仿真结果表明,对比传统算法,该算法可以在满足用户业务需求的情况下降低计算成本,并且算法收敛速度快,可以实现快速决策。
In response to the diverse business needs of the future in all domains and scenarios
6G networks need to provide scenario-based and personalized service capabilities. Aiming at the problem of quality assurance of fine-grained business services in the future
a joint optimization algorithm for 6G network task offloading and fine-grained slice resource scheduling was proposed
which jointly considered the calculation offloading of multiple MECs and the resource scheduling of network slices
and minimized the execution delay and energy consumption cost of the task within limited resources. Then the A3C reinforcement learning algorithm of asynchronous training was used to solve it. The simulation results show that
compared with the traditional algorithm
the proposed algorithm can reduce the computing cost while meeting the business needs of users. Additionally
the algorithm converges fast and can realize fast decision-making.
HASSEBO A . The road to 6G , vision , drivers , trends , and challenges [C ] // Proceedings of the 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC) . Piscataway : IEEE Press , 2022 : 1112 - 1116 .
KAMBLE P , SHAIKH A N . 6G wireless networks: vision, requirements, applications and challenges [C ] // Proceedings of the 2022 5th International Conference on Advances in Science and Technology (ICAST) . Piscataway : IEEE Press , 2022 : 577 - 581 .
JASSIM MOHAMMED R , AL-SHAMMARI S W . Performance study of mobile edge computing [C ] // Proceedings of the 2022 Iraqi International Conference on Communication and Information Technologies (IICCIT) . Piscataway : IEEE Press , 2022 : 1 - 6 .
ZHANG Y , LI W , SEAH W K G . Admission control with latency considerations for 5G mobile edge computing [C ] // Proceedings of the 2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM) . Piscataway : IEEE Press , 2023 : 167 - 174 .
ARUN V , AZHAGIRI M . Design of long-term evolution based mobile edge computing systems to improve 5G systems [C ] // Proceedings of the 2023 2nd International Conference on Edge Computing and Applications (ICECAA) . Piscataway : IEEE Press , 2023 : 160 - 165 .
GULERIA C , DAS K , SAHU A . A survey on mobile edge computing: efficient energy management system [C ] // Proceedings of the 2021 Innovations in Energy Management and Renewable Resources (52042) . Piscataway : IEEE Press , 2021 : 1 - 4 .
MASOUDI M , CAVDAR C . Device vs edge computing for mobile services: delay-aware decision making to minimize power consumption [J ] . IEEE Transactions on Mobile Computing , 2021 , 20 ( 12 ): 3324 - 3337 .
LIU J , MAO Y Y , ZHANG J , et al . Delay-optimal computation task scheduling for mobile-edge computing systems [C ] // Proceedings of the 2016 IEEE International Symposium on Information Theory (ISIT) . Piscataway : IEEE Press , 2016 : 1451 - 1455 .
ZHANG P , YANG J , FAN R F . Energy-efficient mobile edge computation offloading with multiple base stations [C ] // Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC) . Piscataway : IEEE Press , 2019 : 255 - 259 .
CHEN L X , ZHOU S , XU J . Computation peer offloading for energy-constrained mobile edge computing in small-cell networks [J ] . IEEE/ACM Transactions on Networking , 2018 , 26 ( 4 ): 1619 - 1632 .
WU B W , ZENG J , GE L , et al . A game-theoretical approach for energy-efficient resource allocation in MEC network [C ] // Proceedings of the ICC 2019 - 2019 IEEE International Conference on Communications (ICC) . Piscataway : IEEE Press , 2019 : 1 - 6 .
HU S H , LI G H . Dynamic request scheduling optimization in mobile edge computing for IoT applications [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 2 ): 1426 - 1437 .
YANG Y J , CHEN X , CHEN Y , et al . Green-oriented offloading and resource allocation by reinforcement learning in MEC [C ] // Proceedings of the 2019 IEEE International Conference on Smart Internet of Things (SmartIoT) . Piscataway : IEEE Press , 2019 : 378 - 382 .
LIU Y , YANG C , JIANG L , et al . Intelligent edge computing for IoT-based energy management in smart cities [J ] . IEEE Network , 2019 , 33 ( 2 ): 111 - 117 .
ZHANG J , XIA W W , YAN F , et al . Joint computation offloading and resource allocation optimization in heterogeneous networks with mobile edge computing [J ] . IEEE Access , 2018 ( 6 ): 19324 - 19337 .
0
浏览量
7
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构