浏览全部资源
扫码关注微信
南京交通职业技术学院,江苏 南京 211100
[ "张云 (1989- ),女,南京交通职业技术学院讲师,主要研究方向为智能交通、控制算法。" ]
收稿日期:2024-01-20,
修回日期:2024-03-05,
纸质出版日期:2024-05-20
移动端阅览
张云.CR-NOMA中基于深度确定策略梯度的能效优化策略[J].电信科学,2024,40(05):112-120.
ZHANG Yun.Deep deterministic policy gradient-based energy efficiency optimization algorithm for CR-NOMA[J].Telecommunications Science,2024,40(05):112-120.
张云.CR-NOMA中基于深度确定策略梯度的能效优化策略[J].电信科学,2024,40(05):112-120. DOI: 10.11959/j.issn.1000-0801.2024146.
ZHANG Yun.Deep deterministic policy gradient-based energy efficiency optimization algorithm for CR-NOMA[J].Telecommunications Science,2024,40(05):112-120. DOI: 10.11959/j.issn.1000-0801.2024146.
利用认知无线电非正交多址接入(cognitive radio non-orthogonal multiple access,CR-NOMA)技术可缓解频谱资源短缺问题,提升传感设备的吞吐量。传感设备的能效问题一直制约着传感设备的应用。为此,针对CR-NOMA中的传感设备,提出基于深度确定策略梯度的能效优化(deep deterministic policy gradient- based energy efficiency optimization,DPEE)算法。DPEE算法通过联合优化传感设备的传输功率和时隙分裂系数,提升传感设备的能效。将能效优化问题建模成马尔可夫决策过程,再利用深度确定策略梯度法求解。最后,通过仿真分析了电路功耗、时隙时长和主设备数对传感能效的影响。仿真结果表明,能效随传感设备电路功耗的增加而下降。此外,相比于基准算法,提出的DPEE算法提升了能效。
Cognitive radio non-orthogonal multiple access (CR-NOMA) technology was used to alleviate the shortage of spectrum resource
and improve the throughput of sensor devices. But the energy efficiency problem had been restricting the application of sensor devices. Therefore
for CR-NOMA
deep deterministic policy gradient-based energy efficiency optimization (DPEE) algorithm was proposed. By jointly optimizing the transmission power and time slot splitting coefficient
the energy efficiency of sensor devices was improved. The energy efficiency optimization problem was modeled as a Markov decision process
and it was solved by the deep deterministic policy gradient (DDPG) method. Finally
the influence of circuit power consumption
time slot durations and number of main devices on energy efficiency were analyzed. The simulation results show that the energy efficiency decreases as the circuit power consumption of sensor device increases. In addition
compared with other algorithms
the proposed algorithm improves energy efficiency.
范绍帅 , 吴剑波 , 田辉 . 面向能量受限工业物联网设备的联邦学习资源管理 [J ] . 通信学报 , 2022 , 43 ( 8 ): 65 - 77 .
FAN S S , WU J B , TIAN H . Federated learning resource management for energy-constrained industrial IoT devices [J ] . Journal on Communications , 2022 , 43 ( 8 ): 65 - 77 .
GUO S T , SHI Y W , YANG Y Y , et al . Energy efficiency maximization in mobile wireless energy harvesting sensor networks [J ] . IEEE Transactions on Mobile Computing , 2018 , 17 ( 7 ): 1524 - 1537 .
乔宇航 , 贺玉成 , 杨键泉 , 等 . 两级中继选择的协作CR-NOMA网络性能分析 [J ] . 信号处理 , 2020 , 36 ( 2 ): 196 - 202 .
QIAO Y H , HE Y C , YANG J Q , et al . Performance analysis for cooperative CR-NOMA with two-stage relay selection [J ] . Journal of Signal Processing , 2020 , 36 ( 2 ): 196 - 202 .
DING Z G , SCHOBER R , POOR H V . A new QoS-guarantee strategy for NOMA assisted semi-grant-free transmission [J ] . IEEE Transactions on Communications , 2021 , 69 ( 11 ): 7489 - 7503 .
LI L Y , XU H B , MA J , et al . Joint EH time and transmit power optimization based on DDPG for EH communications [J ] . IEEE Communications Letters , 2020 , 24 ( 9 ): 2043 - 2046 .
DING Z G , SCHOBER R , POOR H V . No-pain No-gain: DRL assisted optimization in energy-constrained CR-NOMA networks [J ] . IEEE Transactions on Communications , 2021 , 69 ( 9 ): 5917 - 5932 .
WANG Z , GE L N , LI T S , et al . Energy efficiency maximization strategy for Sink node in SWIPT-enabled sensor-cloud based on optimal stopping rules [J ] . China Communications , 2021 , 18 ( 1 ): 222 - 236 .
颜晓娟 , 安康 , 张千锋 , 等 . 面向用户随机分布的NOMA-卫星通信网络性能分析 [J ] . 电讯技术 , 2020 , 60 ( 2 ): 153 - 158 .
YAN X J , AN K , ZHANG Q F , et al . Performance analysis of NOMA-based satellite networks with randomly deployed users [J ] . Telecommunication Engineering , 2020 , 60 ( 2 ): 153 - 158 .
褚翼飞 , 杨新杰 . 支持多个多播组业务的多中继协作NOMA系统中断性能研究 [J ] . 电信科学 , 2023 , 39 ( 7 ): 35 - 45 .
CHU Y F , YANG X J . Outage performance of multi-relay collaborative NOMA systems supporting multiple multicast services [J ] . Telecommunications Science , 2023 , 39 ( 7 ): 35 - 45 .
BOYD S P , VANDENBERGHE L . Convex optimization [M ] . Cambridge, UK : Cambridge , 2004 .
SUTTON R S , BARTO A G . Reinforcement learning: an introduction [M ] . Cambridge, Mass .: MIT Press , 1998 .
陈清林 , 邝祝芳 . 基于DDPG的边缘计算任务卸载和服务缓存算法 [J ] . 计算机工程 , 2021 , 47 ( 10 ): 26 - 33 .
CHEN Q L , KUANG Z F . Task offloading and service caching algorithm based on DDPG in edge computing [J ] . Computer Engineering , 2021 , 47 ( 10 ): 26 - 33 .
司鹏搏 , 吴兵 , 杨睿哲 , 等 . 基于DDPG三维无人机路径规划 [J ] . 高技术通讯 , 2022 , 32 ( 10 ): 1049 - 1057 .
SI P B , WU B , YANG R Z , et al . A DDPG algorithm to UAV path planning in 3D [J ] . Chinese High Technology Letters , 2022 , 32 ( 10 ): 1049 - 1057 .
樊湖 . 无线数据通信快速组网方法及组网成功率计算 [J ] . 无线电工程 , 2021 , 51 ( 2 ): 104 - 110 .
FAN H . Fast networking method and networking success probability calculation of wireless data communication system [J ] . Radio Engineering , 2021 , 51 ( 2 ): 104 - 110 .
刘德稳 , 招继炳 , 盛冬发 , 等 . 基于Rayleigh阻尼模型的层间隔震结构上下部选择 [J ] . 湖南科技大学学报(自然科学版) , 2022 , 37 ( 3 ): 27 - 34 .
LIU D W , ZHAO J B , SHENG D F , et al . Research model selection of mid-story isolated structure based on Rayleigh damping [J ] . Journal of Hunan University of Science and Technology (Natural Science Edition) , 2022 , 37 ( 3 ): 27 - 34 . .
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构