浏览全部资源
扫码关注微信
1.国家计算机网络应急技术处理协调中心,北京 100029
2.北京邮电大学计算机学院,北京 100876
[ "秘蓉新(1984- ),女,国家计算机网络应急技术处理协调中心助理研究员,主要研究方向为人工智能、网络安全、信息安全。" ]
[ "姚文文(1984- ),女,国家计算机网络应急技术处理协调中心助理研究员,主要研究方向为网络安全战略、信息科技发展态势。" ]
[ "吴兵灏(2001- ),男,北京邮电大学计算机学院(国家示范性软件学院)硕士生,主要研究方向为深度学习、计算机视觉与行人重识别。" ]
收稿日期:2024-03-27,
修回日期:2024-05-10,
纸质出版日期:2024-06-20
移动端阅览
秘蓉新,姚文文,吴兵灏.基于多任务学习的行人重识别算法研究[J].电信科学,2024,40(06):127-136.
MI Rongxin,YAO Wenwen,WU Binghao.Research on person re-identification algorithm based on multi-task learning[J].Telecommunications Science,2024,40(06):127-136.
秘蓉新,姚文文,吴兵灏.基于多任务学习的行人重识别算法研究[J].电信科学,2024,40(06):127-136. DOI: 10.11959/j.issn.1000-0801.2024157.
MI Rongxin,YAO Wenwen,WU Binghao.Research on person re-identification algorithm based on multi-task learning[J].Telecommunications Science,2024,40(06):127-136. DOI: 10.11959/j.issn.1000-0801.2024157.
行人重识别(person re-identification,re-ID)在多摄像机之间进行跨镜检索以匹配目标行人图像,可以在人脸、指纹等生物特征失效的情况下实现行人关联,已成为智能视频监控系统的关键技术,对智能安防、智慧城市等领域的产业落地进行了有效赋能。传统的行人重识别算法通常采用表征学习或度量学习方法。基于多任务学习的机器学习模式,结合表征学习与度量学习方法,综合利用特征表示和距离度量两方面的优势,采用分类损失和三元组损失共同训练模型,使模型在特征提取和相似性度量上都得到充分的训练。实验结果表明,该方法在行人重识别任务中取得了更好的性能,验证了鲁棒性和在泛化能力方面的优越性。
Person re-identification (re-ID) involves the cross-camera retrieval and matching of target pedestrian images
facilitating pedestrian association in scenarios where biometric features such as faces and fingerprints may prove ineffective. It has become a pivotal technology in intelligent video surveillance systems
playing a crucial role in domains like smart security and smart cities. Traditional re-ID algorithms typically employ either representation learning or metric learning methods. A novel approach was proposed which combined representation learning and metric learning methods based on the multi-task learning machine learning paradigm. By capitalizing on the advantages of both feature representation and distance metric
and concurrently training the model using classification loss and triplet loss
comprehensive training for both feature extraction and similarity measurement was ensured. Experimental results validate the effectiveness of the proposed approach
demonstrating superior performance in re-ID tasks and underscoring the robustness and superior generalization capability.
WEI L H , ZHANG S L , YAO H T , et al . Glad: Global-local-alignment descriptor for pedestrian retrieval [C ] // Proceedings of the 25th ACM international conference on Multimedia . New York : ACM Press , 2017 : 420 – 428 .
ZHENG L , HUANG Y J , LU H C , et al . Pose invariant embedding for deep person re-identification [EB ] . 2017 : 1701 .07732.
SARFRAZ M S , SCHUMANN A , EBERLE A , et al . A pose-sensitive embedding for person re-identification with expanded cross neighborhood re-ranking [C ] // Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway : IEEE Press , 2018 : 420 - 429 .
KALAYEH M M , BASARAN E , GÖKMEN M , et al . Human semantic parsing for person re-identification [C ] // Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway : IEEE Press , 2018 : 1062 - 1071 .
QI L , HUO J , WANG L , et al . MaskReID: a mask based deep ranking neural network for person re-identification [EB ] . 2018 : 1804 .03864.
ZHANG X , LUO H , FAN X , et al . AlignedReID: surpassing human-level performance in person re-identification [EB ] . 2017 : 1711 .08184.
FAN X , LUO H , ZHANG X , et al . SCPNet: spatial-channel parallelism network for joint holistic and partial person re-identification [EB ] . 2018 : 1810 .06996.
SUN Y F , ZHENG L , YANG Y , et al . Beyond part models: person retrieval with refined part pooling (and A strong convolutional baseline) [C ] // European Conference on Computer Vision . Cham : Springer , 2018 : 501 - 518 .
ZHENG F , SUN X , JIANG X Y , et al . A coarse-to-fine pyramidal model for person re-identification via multi-loss dynamic training [EB ] . 2018 : 1810 .12193.
DAI Z Z , CHEN M Q , ZHU S Y , et al . Batch feature erasing for person re-identification and beyond [EB ] . 2018 : 1811 .07130.
WANG C , ZHANG Q , HUANG C , et al . Mancs: A multi-task attentional network with curriculum sampling for person re-identification [C ] // European Conference on Computer Vision . Cham : Springer , 2018 : 384 - 400 .
SI J L , ZHANG H G , LI C G , et al . Dual attention matching network for context-aware feature sequence based person re-identification [C ] // Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway : IEEE Press , 2018 : 5363 - 5372 .
LI W , ZHU X T , GONG S G . Harmonious attention network for person re-identification [C ] // Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway : IEEE Press , 2018 : 2285 - 2294 .
ZHONG Z , ZHENG L , ZHENG Z D , et al . CamStyle: a novel data augmentation method for person re-identification [J ] . IEEE Transactions on Image Processing , 2019 , 28 ( 3 ): 1176 - 1190 .
QIAN X L , FU Y W , XIANG T , et al . Posenormalized image generation for person re-identification [C ] // Proceedings of the European Conference on Computer Vision (ECCV) . [ S.l. : s.n. ] , 2018 : 650 – 667 .
郑声晟 , 殷海兵 , 黄晓峰 , 等 . 基于GAN的无监督域自适应行人重识别 [J ] . 电信科学 , 2021 , 37 ( 2 ): 99 - 106 .
ZHENG S C , YIN H B , HUANG X F , et al . GAN-based unsupervised domain adaptive person re-identification [J ] . Telecommunications Science , 2021 , 37 ( 2 ): 99 - 106 .
ZHENG Z D , ZHENG L , YANG Y . A discriminatively learned CNN embedding for person re-identification [EB ] . 2016 : 1611 .05666.
SUN Y F , ZHENG Lg , DENG W J , et al . Svdnet for pedestrian retrieval [C ] // Proceedings of the IEEE International Conference on Computer Vision . Piscataway : IEEE Press , 2017 : 3800 - 3808 .
HERMANS A , BEYER L , LEIBE B , et al . In defense of the triplet loss for person re-identification [EB ] . 2017 : 1703 .07737.
RISTANI E , TOMASI C . Features for multi-target multi-camera tracking and re-identification [C ] // Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway : IEEE Press , 2018 : 6036 - 6046 .
GENG M Y , WANG Y W , XIANG T , et al . Deep transfer learning for person re-identification [EB ] . 2016 : 1611 .05244.
LIN Y T , ZHENG L , ZHENG Z D , et al . Improving person re-identification by attribute and identity learning [EB ] . 2017 : 1703 .07220.
ZHENG L , YANG Y , HAUPTMANN A G , et al . Person re-identification: past, present and future [EB ] . 2016 : 1610 .02984.
MATSUKAWA T , SUZUKI E . Person re-identification using CNN features learned from combination of attributes [C ] // Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR) . Piscataway : IEEE Press , 2016 : 2428 - 2433 .
VARIOR R R , HALOI M , WANG G . Gated Siamese convolutional neural network architecture for human re-identification [C ] // European Conference on Computer Vision . Cham : Springer , 2016 : 791 - 808 .
SCHROFF F , KALENICHENKO D , PHILBIN J . FaceNet: a unified embedding for face recognition and clustering [C ] // Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2015 : 815 - 823 .
LIU H , FENG J S , QI M B , et al . End-to-end comparative attention networks for person re-identification [J ] . IEEE Transactions on Image Processing , 2017 , 26 ( 7 ): 3492 - 3506 .
CHENG D , GONG Y H , ZHOU S P , et al . Person re-identification by multi-channel parts-based CNN with improved triplet loss function [C ] // Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2016 : 1335 - 1344 .
CHEN W H , CHEN X T , ZHANG J G , et al . Beyond triplet loss: a deep quadruplet network for person re-identification [EB ] . 2017 : 1704 .01719.
XIAO Q Q , LUO H , ZHANG C . Margin sample mining loss: a deep learning based method for person re-identification [EB ] . 2017 : 1710 .00478.
HE K M , ZHANG X Y , REN S Q , et al . Deep residual learning for image recognition [C ] // Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2016 : 770 - 778 .
SUN Y F , ZHENG L , YANG Y , et al . Beyond part models: person retrieval with refined part pooling (and A strong convolutional baseline) [C ] // European Conference on Computer Vision . Cham : Springer , 2018 : 501 - 518 .
KINGMA D P , BA J . Adam: a method for stochastic optimization [EB ] . 2014 : 1412 .6980.
ZHONG Z , ZHENG L , KANG G L , et al . Random erasing data augmentation [J ] . Proceedings of the AAAI Conference on Artificial Intelligence , 2020 , 34 ( 7 ): 13001 - 13008 .
ZHENG L , SHEN L Y , TIAN L , et al . Scalable person re-identification: a benchmark [C ] // Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV) . Piscataway : IEEE Press , 2015 : 1116 - 1124 .
RISTANI E , SOLERA F , ZOU R , et al . Performance measures and a data set for multi-target, multi-camera tracking [C ] // European Conference on Computer Vision . Cham : Springer , 2016 : 17 - 35 .
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构