浏览全部资源
扫码关注微信
1.北京大学武汉人工智能研究院,湖北 武汉 430075
2.西藏大学珠峰研究院,西藏 拉萨 850000
3.中国人民解放军军事科学院系统工程研究院,北京 100082
4.北京理工大学信息与电子学院,北京 100081
5.中国移动通信有限公司研究院,北京 100053
[ "吴志强(1973- ),男,博士,北京大学武汉人工智能研究院执行院长、西藏大学珠峰研究院副院长,主要研究方向为人工智能、智能信息处理、大数据、认知射频与认知无线电、复杂环境下的信息传输与处理。" ]
[ "刘千里(1975- ),男,博士,中国人民解放军军事科学院系统工程研究院正高级工程师,主要研究方向为移动互联网、战术通信网络、云原生网络等。" ]
[ "刘佳斌(1990- ),男,博士,北京理工大学信息与电子学院副教授,主要研究方向为机器学习、计算机视觉、雷达信号处理。" ]
[ "冯青(1980- ),女,博士,北京大学武汉人工智能研究院研究员,主要研究方向为智能电网、弱信号检测、大数据分析、智能计算。" ]
肖善鹏(1976- ),男,中国移动通信有限公司研究院高级工程师,主要研究方向为无线通信、物联网技术等。
刘尚,liushang118@163.com
收稿日期:2023-12-11,
修回日期:2024-03-05,
纸质出版日期:2024-06-20
移动端阅览
吴志强,刘千里,刘佳斌等.协作频谱感知中的高效和公平认知节点分配方案[J].电信科学,2024,40(06):100-113.
WU Zhiqiang,LIU Qianli,LIU Jiabin,et al.Effective and fair cognitive terminal assignment scheme for cooperative spectrum sensing[J].Telecommunications Science,2024,40(06):100-113.
吴志强,刘千里,刘佳斌等.协作频谱感知中的高效和公平认知节点分配方案[J].电信科学,2024,40(06):100-113. DOI: 10.11959/j.issn.1000-0801.2024160.
WU Zhiqiang,LIU Qianli,LIU Jiabin,et al.Effective and fair cognitive terminal assignment scheme for cooperative spectrum sensing[J].Telecommunications Science,2024,40(06):100-113. DOI: 10.11959/j.issn.1000-0801.2024160.
协作频谱感知是认知无线电网络的基础和关键阶段,频谱检测过程中的节点分配策略将直接决定联合频谱感知的结果。介绍了多种分配认知终端的方法,旨在提高频谱感知的效率和公平性。针对不同子频带的感知效率,提出了一种称为由频点占用导致的无效传输参数(inefficient transport parameter,ITP)指标来评估通信性能,给出了感知效率优化问题的闭式表达解,设计的场景包括终端对相同频带有不同的感知性能和相同的感知性能。针对不同子频带间的感知公平性,提出了两种分配算法:弓形分配算法和类划分分配算法。子频带间的公平性通过评估子带中最差的感知性能进行衡量。为了适用于实际场景,加入了频段属性参数来增强公平性,该参数考虑了主用户使用不同频段的优先级及抗干扰能力。仿真结果表明,所提出的策略显著改善了认知无线电网络中的ITP,特别是在子频带利用率不同的情况下,提出的弓形分配算法在公平性不明显降低的情况下,复杂度有明显改善。
Cooperative spectrum sensing is regarded as the foundation and a key stage of cognitive radio networks. The node allocation strategy during the spectrum detection process was directly determined by the results of joint spectrum sensing. Various methods for allocating cognitive terminals to enhance the efficiency and fairness of spectrum sensing were introduced. Aiming at the perceptual efficiency of different sub-bands
an indicator called the inefficient transmission parameter (ITP) was proposed to evaluate communication performance
and a closed-form expression solution to the perceptual efficiency optimization problem was provided. The designed scenarios included terminal pairs with the same frequencies having different perceptual properties and the same perceptual properties. For the perceived fairness among different sub-bands
two allocation algorithms were proposed: the arcuate allocation algorithm and the class division allocation algorithm. Fairness between sub-bands was measured by evaluating the worst perceived performance in the sub-band. In order to be applicable to actual scenarios
the frequency band property parameter was added to enhance fairness. This parameter was taken into account the priority and anti-interference ability of the main user using different frequency bands. Simulation results show that the proposed strategy significantly improves ITP in cognitive radio networks
especially when sub-band utilization is different
and the proposed arcuate allocation algorithm significantly improves the perceived fairness of the system.
MITOLA J , MAGUIRE G Q . Cognitive radio: making software radios more personal [J ] . IEEE Personal Communications , 1999 , 6 ( 4 ): 13 - 18 .
ZHANG Z J , ZHANG W Y , ZEADALLY S , et al . Cognitive radio spectrum sensing framework based on multi-agent architecture for 5G networks [J ] . IEEE Wireless Communications , 2015 , 22 ( 6 ): 34 - 39 .
GUPTA M S , KUMAR K . Progression on spectrum sensing for cognitive radio networks: a survey, classification, challenges and future research issues [J ] . Journal of Network and Computer Applications , 2019 ( 143 ): 47 - 76 .
IVANOV A , TONCHEV K , POULKOV V , et al . Probabilistic spectrum sensing based on feature detection for 6G cognitive radio: a survey [J ] . IEEE Access , 2021 ( 9 ): 116994 - 117026 .
HU J , LI G X , BIAN D M , et al . Energy-efficient cooperative spectrum sensing in cognitive satellite terrestrial networks [J ] . IEEE Access , 2020 ( 8 ): 161396 - 161405 .
CAI P X , ZHANG Y . Intelligent cognitive spectrum collaboration: Convergence of spectrum sensing, spectrum access, and coding technology [J ] . Intelligent and Converged Networks , 2020 , 1 ( 1 ): 79 - 98 .
LIU X , JIA M , ZHOU M , et al . Integrated cooperative spectrum sensing and access control for cognitive industrial Internet of Things [J ] . IEEE Internet of Things Journal , 2021 , 10 ( 3 ): 1887 - 1896 .
OLAWOLE A A , TAKAWIRA F , OYERINDE O O . Cooperative spectrum sensing in multichannel cognitive radio networks with energy harvesting [J ] . IEEE Access , 2019 ( 7 ): 84784 - 84802 .
RAI A , SEHGAL A , SINGAL T L , et al . Spectrum sensing and allocation schemes for cognitive radio [J ] . Machine Learning and Cognitive Computing for Mobile Communications and Wireless Networks , 2020 : 91 - 129 .
YUCEK T , ARSLAN H . A survey of spectrum sensing algorithms for cognitive radio applications [J ] . IEEE Communications Surveys & Tutorials , 2009 , 11 ( 1 ): 116 - 130 .
LEE W Y , AKYILDIZ I F . Optimal spectrum sensing framework for cognitive radio networks [J ] . IEEE Transactions on Wireless Communications , 2008 , 7 ( 10 ): 3845 - 3857 .
SUN C H , ZHANG W , BEN LETAIEF K . Cooperative spectrum sensing for cognitive radios under bandwidth constraints [C ] // Proceedings of the 2007 IEEE Wireless Communications and Networking Conference . Piscataway : IEEE Press , 2007 : 1 - 5 .
宋敬群 , 薛剑韬 , 冯志勇 , 等 . 认知无线电网络中合作频谱感知参数优化 [J ] . 北京邮电大学学报 , 2011 , 34 ( 1 ): 111 - 115 .
SONG J Q , XUE J T , FENG Z Y , et al . Parameters optimization for cooperative spectrum sensing in cognitive radio networks [J ] . Journal of Beijing University of Posts and Telecommunications , 2011 , 34 ( 1 ): 111 - 115 .
ZHAI L , WANG H , LIU C . Distributed schemes for crowdsourcing-based sensing task assignment in cognitive radio networks [J ] . Wireless Communications and Mobile Computing , 2017 :1- 8 . .
LEE C H , WOLF W . Multiple access-inspired cooperative spectrum sensing for cognitive radio [C ] // Proceedings of the MILCOM 2007 - IEEE Military Communications Conference . Piscataway : IEEE Press , 2007 : 1 - 6 .
WANG W W , KASIRI B , CAI J , et al . Channel assignment schemes for cooperative spectrum sensing in multi-channel cognitive radio networks [J ] . Wireless Communications and Mobile Computing , 2015 , 15 ( 10 ): 1471 - 1484 .
ZHANG W , YANG Y , YEO C K . Cluster-based cooperative spectrum sensing assignment strategy for heterogeneous cognitive radio network [J ] . IEEE Transactions on Vehicular Technology , 2014 , 64 ( 6 ): 2637 - 2647 .
KHAN Z , LEHTOMAKI J , UMEBAYASHI K , et al . On the selection of the best detection performance sensors for cognitive radio networks [J ] . IEEE Signal Processing Letters , 2010 , 17 ( 4 ): 359 - 362 .
ADELANTADO F , JUAN A , VERIKOUKIS C . Adaptive sensing user selection mechanism in cognitive wireless networks [J ] . IEEE Communications Letters , 2010 , 14 ( 9 ): 800 - 802 .
XIA W F , YUAN W , CHENG W Q , et al . Optimization of cooperative spectrum sensing in ad-hoc cognitive radio networks [C ] // Proceedings of the 2010 IEEE Global Telecommunications Conference GLOBECOM . Piscataway : IEEE Press , 2010 : 1 - 5 .
WANG Z , FENG Z , ZHANG P . An iterative Hungarian algorithm based coordinated spectrum sensing strategy [J ] . IEEE communications letters , 2010 , 15 ( 1 ): 49 - 51 .
AN C Y , SI P B , JI H . Wideband spectrum sensing scheme in cognitive radio networks with multiple primary networks [C ] // Proceedings of the 2011 IEEE Wireless Communications and Networking Conference . Piscataway : IEEE Press , 2011 : 67 - 71 .
WANG L S , DOUFEXI A , WILLIAMS C , et al . Cognitive node selection and assignment algorithms for weighted cooperative sensing in radar systems [J ] . Physical Communication , 2009 , 2 ( 1/2 ): 58 - 72 .
OBITE F , USMAN A D , OKAFOR E . An overview of deep reinforcement learning for spectrum sensing in cognitive radio networks [J ] . Digital Signal Processing , 2021 ( 113 ): 103014 .
SONG C , ZHANG Q . Cooperative spectrum sensing with multi-channel coordination in cognitive radio networks [C ] // Proceedings of the 2010 IEEE International Conference on Communications . Piscataway : IEEE Press , 2010 : 1 - 5 .
LIANG Y C , ZENG Y H , PEH E C Y , et al . Sensing-throughput tradeoff for cognitive radio networks [J ] . IEEE Transactions on Wireless Communications , 2008 , 7 ( 4 ): 1326 - 1337 .
WANG B , FENG Z Y , ZHANG P , et al . Prioritized spectrum sensing scheme based on semi-Markov process [C ] // Proceedings of the 2012 IEEE 75th Vehicular Technology Conference (VTC Spring) . Piscataway : IEEE Press , 2012 : 1 - 5 .
DIGHAM F F , ALOUINI M S , SIMON M K . On the energy detection of unknown signals over fading channels [C ] // Proceedings of the IEEE International Conference on Communications, 2003. ICC '03 . Piscataway : IEEE Press , 2003 : 3575 - 3579 .
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构