浏览全部资源
扫码关注微信
宁波大学信息科学与工程学院,浙江 宁波 315211
[ "王雨晞(1999- ),男,宁波大学信息科学与工程学院硕士生,主要研究方向为通信网智能运维。" ]
[ "叶庆卫(1970- ),男,宁波大学信息科学与工程学院教授、硕士生导师,主要研究方向为通信信号处理、信号传输与检测、分类器与机器学习等。" ]
周鹏(1999- ),男,宁波大学信息科学与工程学院硕士生,主要研究方向为脑电信号处理。
李冰(2001- ),女,宁波大学信息科学与工程学院硕士生,主要研究方向为通信网智能运维。
王晓东(1970- ),男,宁波大学信息科学与工程学院教授、硕士生导师,主要研究方向为多媒体信号处理、图像处理等。
收稿日期:2024-02-21,
修回日期:2024-05-09,
纸质出版日期:2024-08-20
移动端阅览
王雨晞,叶庆卫,周鹏等.日志信息驱动的计算机网络节点故障预测研究[J].电信科学,2024,40(08):11-22.
WANG Yuxi,YE Qingwei,ZHOU Peng,et al.Research on fault prediction of computer network nodes driven by log information[J].Telecommunications Science,2024,40(08):11-22.
王雨晞,叶庆卫,周鹏等.日志信息驱动的计算机网络节点故障预测研究[J].电信科学,2024,40(08):11-22. DOI: 10.11959/j.issn.1000-0801.2024168.
WANG Yuxi,YE Qingwei,ZHOU Peng,et al.Research on fault prediction of computer network nodes driven by log information[J].Telecommunications Science,2024,40(08):11-22. DOI: 10.11959/j.issn.1000-0801.2024168.
针对计算机网络中节点故障对正常业务运行的影响,提出了一种以日志信息为驱动的故障预测方法,通过构建高效的深度学习模型,并引入校正机制,对计算机网络中的节点故障进行预测和诊断,支持网络运维的需求。首先收集计算机网络中各节点产生的日志信息,获得各节点的状态向量和所有节点的状态矩阵,然后通过状态填补原则补充数据集,最后将故障预测问题转换成时间序列预测问题。在公开的小规模运维数据集GAIA中进行性能评估。实验结果表明,与其他算法相比,所提模型在局部网络场景下预测效果良好,预测有效性得到了验证,为计算机网络故障预测研究提供了一定的参考价值。
A fault prediction method driven by log information was proposed to address the impact of node failures on normal business operations in computer networks. By constructing an efficient deep learning model and introducing a correction mechanism
node failures in computer networks were predicted and diagnosed to meet the needs of network operation and maintenance. Firstly
the log information generated by each node in the computer network was collected
the state vectors of each node and the state matrices of all nodes were obtained
then the dataset through the state filling principle was supplemented
and finally the fault prediction problem into a time series prediction problem was transformed. The performance evaluation is conducted on the publicly available small-scale operation and maintenance dataset GAIA
and the experimental results show that compared with other algorithms
the proposed model has good predictive performance in local network scenarios
and its predictive effectiveness is verified
providing a certain reference value for computer network fault prediction research.
樊志强 , 刘日昇 . 网络设备智能化管理的研究与应用 [J ] . 物联网技术 , 2023 , 13 ( 8 ): 51 - 55 .
FAN Z Q , LIU R S . Research and application of intelligent management of network equipment [J ] . Internet of Things Technologies , 2023 , 13 ( 8 ): 51 - 55 .
SHUAN L H , FEI T Y , KING S W , et al . Network equipment failure prediction with big data analytics [J ] . International Journal of Advances in Soft Computing & Its Applications , 2016 , 8 ( 3 ).
LEE H . Framework and development of fault detection classification using IoT device and cloud environment [J ] . Journal of Manufacturing Systems , 2017 , 43 : 257 - 270 .
CHOE H O , LEE M H . Artificial intelligence-based fault diagnosis and prediction for smart farm information and communication technology equipment [J ] . Agriculture , 2023 , 13 ( 11 ): 2124 .
HE S L , ZHU J M , HE P J , et al . Experience report: system log analysis for anomaly detection [C ] // Proceedings of the 2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE) . Piscataway : IEEE Press , 2016 : 207 - 218 .
NAM S , HONG J , YOO J H , et al . Virtual machine failure prediction using log analysis [C ] // Proceedings of the 2021 22nd Asia-Pacific Network Operations and Management Symposium (APNOMS) . Piscataway : IEEE Press , 2021 : 279 - 284 .
DU M , LI F F , ZHENG G N , et al . DeepLog: anomaly detection and diagnosis from system logs through deep learning [C ] // Proceedings of the Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security . New York : ACM , 2017 : 1285 - 1298 .
CHEN Z B , LIU J Y , GU W W , et al . Experience report: deep learning-based system log analysis for anomaly detection [EB ] . 2021 : 2107 .05908.
贾统 , 李影 , 吴中海 . 基于日志数据的分布式软件系统故障诊断综述 [J ] . 软件学报 , 2020 , 31 ( 7 ): 1997 - 2018 .
JIA T , LI Y , WU Z H . Survey of state-of-the-art log-based failure diagnosis [J ] . Journal of Software , 2020 , 31 ( 7 ): 1997 - 2018 .
MASSARO A , KOSTADINOV D , SILVA A , et al . Predicting network hardware faults through layered treatment of alarms logs [J ] . Entropy , 2023 , 25 ( 6 ): 917 .
钟将 , 时待吾 , 王振华 . 基于告警日志的网络故障预测 [J ] . 计算机应用 , 2016 , 36 ( S1 ): 49 - 53 .
ZHONG J , SHI D W , WANG Z H . Network failure prediction based on alarm log [J ] . Journal of Computer Applications , 2016 , 36 ( S1 ): 49 - 53 .
TAN Z L , PAN P S . Network fault prediction based on CNN-LSTM hybrid neural network [C ] // Proceedings of the 2019 International Conference on Communications, Information System and Computer Engineering (CISCE) . Piscataway : IEEE Press , 2019 : 486 - 490 .
杨锋英 , 刘会超 . 基于Hadoop的在线网络日志分析系统研究 [J ] . 计算机应用与软件 , 2014 , 31 ( 8 ): 311 - 316 .
YANG F Y , LIU H C . Research on hadoop-based online network log analysis system [J ] . Computer Applications and Software , 2014 , 31 ( 8 ): 311 - 316 .
MA J C , LIU Y , WAN H J , et al . Automatic parsing and utilization of system log features in log analysis: a survey [J ] . Applied Sciences , 2023 , 13 ( 8 ): 4930 .
HAN S B , WU Q H , ZHANG H , et al . Log-based anomaly detection with robust feature extraction and online learning [J ] . IEEE Transactions on Information Forensics and Security , 2021 , 16 : 2300 - 2311 .
LIM M H , LOU J G , ZHANG H Y , et al . Identifying recurrent and unknown performance issues [C ] // Proceedings of the 2014 IEEE International Conference on Data Mining . Piscataway : IEEE Press , 2014 : 320 - 329 .
胡军伟 , 秦奕青 , 张伟 . 正则表达式在Web信息抽取中的应用 [J ] . 北京信息科技大学学报(自然科学版) , 2011 , 26 ( 6 ): 86 - 89 .
HU J W , QIN Y Q , ZHANG W . Regular expression and its applications to web information extraction [J ] . Journal of Beijing Information Science & Technology University , 2011 , 26 ( 6 ): 86 - 89 .
毛远宏 , 孙琛琛 , 徐鲁豫 , 等 . 基于深度学习的时间序列预测方法综述 [J ] . 微电子学与计算机 , 2023 , 40 ( 4 ): 8 - 17 .
MAO Y H , SUN C C , XU L Y , et al . A survey of time series forecasting methods based on deep learning [J ] . Microelectronics & Computer , 2023 , 40 ( 4 ): 8 - 17 .
ZHOU H Y , ZHANG S H , PENG J Q , et al . Informer: beyond efficient transformer for long sequence time-series forecasting [J ] . Proceedings of the AAAI Conference on Artificial Intelligence , 2021 , 35 ( 12 ): 11106 - 11115 .
CHE Z P , PURUSHOTHAM S , CHO K , et al . Recurrent neural networks for multivariate time series with missing values [J ] . Scientific Reports , 2018 , 8 ( 1 ): 6085 .
XIE K J , LIU M B , LU W T , et al . Measurement-based prediction-correction online distributed optimal power flow algorithm for multi-phase active distribution networks [J ] . Journal of Cleaner Production , 2022 ( 362 ): 131935 .
ZHANG R T , MA X L , DING W P , et al . MAP-FCRNN: Multi-step ahead prediction model using forecasting correction and RNN model with memory functions [J ] . Information Sciences , 2023 ( 646 ): 119382 .
ORESHKIN B N , CARPOV D , CHAPADOS N , et al . N-BEATS: Neural basis expansion analysis for interpretable time series forecasting [EB ] . 2019 : 1905 .10437.
0
浏览量
20
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构