浏览全部资源
扫码关注微信
1.中国移动通信集团设计院有限公司,北京 100080
2.中国移动通信集团有限公司,北京 100032
[ "潘洁(1978- ),女,中国移动通信集团设计院有限公司高级工程师,主要研究方向为算力网络安全和信息安全。" ]
[ "侯慧芳(1986- ),女,现就职于中国移动通信集团设计院有限公司,主要研究方向为基于算力网络的新一代网络安全关键技术。" ]
[ "陈曦(1989- ),男,现就职于中国移动通信集团设计院有限公司,主要研究方向为网络与数据安全。" ]
[ "薛曌(1992- ),女,中国移动通信集团设计院有限公司工程师,主要研究方向为网络安全监测、算力网络安全、商用密码。" ]
[ "徐连坤(1976- ),男,中国移动通信集团公司高级工程师,主要研究方向为网络安全。" ]
收稿日期:2024-06-11,
修回日期:2024-08-15,
纸质出版日期:2024-08-20
移动端阅览
潘洁,侯慧芳,陈曦等.面向算力网络的多方安全协同线性回归研究[J].电信科学,2024,40(08):162-171.
PAN Jie,HOU Huifang,CHEN Xi,et al.Research on multi-party security collaborative linear regression for computing power networks[J].Telecommunications Science,2024,40(08):162-171.
潘洁,侯慧芳,陈曦等.面向算力网络的多方安全协同线性回归研究[J].电信科学,2024,40(08):162-171. DOI: 10.11959/j.issn.1000-0801.2024204.
PAN Jie,HOU Huifang,CHEN Xi,et al.Research on multi-party security collaborative linear regression for computing power networks[J].Telecommunications Science,2024,40(08):162-171. DOI: 10.11959/j.issn.1000-0801.2024204.
随着科技的飞速发展,机器学习已经成为推动企业进步的关键因素。然而,对于中小企业而言,数据量和算力的限制常常成为其应用机器学习的障碍。算力网络的兴起则为企业带来了新的机遇,但也伴随着数据安全等新的挑战。提出一种面向算力网络的多用户安全协同计算线性回归方案,该方案允许多个用户使用敏感数据在算力网络中实现安全的联合训练,从而构建线性回归模型。该方案采用低成本盲化手段与同态加密技术对用户敏感数据进行加密处理,从而保护了敏感数据的安全性。
With the rapid development of science and technology
machine learning has become a key factor driving the progress of enterprises. However
for small and medium-sized enterprises
the amount of data and computing power often become obstacles to apply machine learning. The rise of computing power networks has brought new opportunities for enterprises
accompanied by new challenges such as data security. A linear regression scheme for multi-user security collaborative computing based on computing power networks was proposed. The scheme allowed multiple users to achieve secure joint training in a computing power network using sensitive data to build a linear regression model. The scheme adopts low-cost blinding method and homomorphic encryption technology to encrypt user sensitive data to protect the security of sensitive data.
郑士芹 . 机器学习算法在数据挖掘中的应用 [J ] . 互联网周刊 , 2024 ( 9 ): 30 - 32 .
ZHENG S Q . The application of machine learning algorithms in data mining [J ] . Internet Weekly , 2024 ( 9 ): 30 - 32 .
ZHOU Y S , SONG L Y , LIU Y N , et al . A privacy-preserving logistic regression-based diagnosis scheme for digital healthcare [J ] . Future Generation Computer Systems , 2023 ( 144 ): 63 - 73 .
AROUJ A , ABDELMONIEM A M . Towards energy-aware federated learning via collaborative computing approach [J ] . Computer Communications , 2024 ( 221 ): 131 - 141 .
朱文阅 , 董江帆 , 李玉华 , 等 . 算力网络安全与数据安全治理技术研究 [J ] . 电信工程技术与标准化 , 2024 , 37 ( 1 ): 12 - 17 .
ZHU W Y , DONG J F , LI Y H , et al . Research on computing power network security and data security governance technologies [J ] . Telecom Engineering Technics and Standardization , 2024 , 37 ( 1 ): 12 - 17 .
张焘 , 许长桥 , 连一博 , 等 . 基于深度强化学习的算力网络主动防御方法 [J ] . 中国科学(信息科学) , 2023 , 53 ( 12 ): 2372 - 2385 .
ZHANG T , XU C Q , LIAN Y B , et al . Deep reinforcement learning-based moving target defense method in computing power network [J ] . Scientia Sinica (Informationis) , 2023 , 53 ( 12 ): 2372 - 2385 .
沈昕炎 , 林亚捷 , 许方敏 , 等 . 面向工业大模型的算力网络架构与关键技术 [J ] . 自动化博览 , 2024 , 41 ( 2 ): 43 - 47 .
SHEN X Y , LIN Y J , XU F M , et al . Computing power network architecture and key technologies for large-scale industrial models [J ] . Automation Panorama , 2024 , 41 ( 2 ): 43 - 47 .
周旭 , 李琢 . 面向算力网络的云边端协同调度技术 [J ] . 中兴通讯技术 , 2023 , 29 ( 4 ): 32 - 37 .
ZHOU X , LI Z . Cloud-edge-end collaborative scheduling technology for computing power network [J ] . ZTE Technology Journal , 2023 , 29 ( 4 ): 32 - 37 .
ZHENG L , CUI Y X , JIN S S , et al . High-performance computing-based open-source power transmission and distribution grid co-simulation [J ] . IEEE Transactions on Power Systems , 2024 , 39 ( 5 ): 6144 - 6153 .
FREEDMAN D . Statistical models: theory and practice [M ] . 2nd ed . Cambridge : Cambridge University Press , 2009 .
IZENMAN A J , IZENMAN A J . Multivariate regression [J ] . Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning , 2008 : 159 - 194 .
PAILLIER P . Public-key cryptosystems based on composite degree residuosity classes [C ] // Lecture Notes in Computer Science . Berlin, Heidelberg : Springer Berlin Heidelberg , 2007 : 223 - 238 .
QIU G W , GUI X L , ZHAO Y L . Privacy-preserving linear regression on distributed data by homomorphic encryption and data masking [J ] . IEEE Access , 2020 , 8 : 107601 - 107613 .
QIAO Y C , LAN Q J , JIA S Y , et al . Blockchain-based multi-institution collaborative credit evaluation modeling method [J ] . Computer Networks , 2024 , 240 : 110187 .
XU R X , JIN W Q , KHAN A N , et al . Cooperative swarm learning for distributed cyclic edge intelligent computing [J ] . Internet of Things , 2023 , 22 : 100783 .
SIM R , ZHANG Y , HOANG N , et al . Incentives in private collaborative machine learning [J ] . Advances in Neural Information Processing Systems , 2024 , 2404 : 01676 .
0
浏览量
9
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构