浏览全部资源
扫码关注微信
浙江工商大学信息与电子工程学院,浙江 杭州 310020
[ "诸葛斌(1976- ),男,博士,浙江工商大学信息与电子工程学院教授,主要研究方向为网络和通信技术、互联网技术和网络安全。" ]
[ "汪盈(2000- ),女,浙江工商大学信息与电子工程学院硕士生,主要研究方向为智慧教育和个性化推荐。" ]
[ "肖梦凡(2001- ),女,浙江工商大学信息与电子工程学院硕士生,主要研究方向为智慧教育和个性化推荐。" ]
[ "颜蕾(1996- ),女,浙江工商大学信息与电子工程学院硕士生,主要研究方向为教育数据挖掘、深度学习和机器学习。" ]
[ "王冰雁(2000- ),女,浙江工商大学信息与电子工程学院硕士生,主要研究方向为智慧教育和数字水印。" ]
[ "董黎刚(1972- ),男,博士,浙江工商大学信息与电子工程学院教授,主要研究方向为智能网络、在线教育。" ]
[ "蒋献(1988- ),男,浙江工商大学信息与电子工程学院讲师、实验员,主要研究方向为在线教育。" ]
收稿日期:2024-06-18,
修回日期:2024-08-16,
纸质出版日期:2024-09-20
移动端阅览
诸葛斌,汪盈,肖梦凡等.基于知识追踪机的多特征融合习题推荐模型[J].电信科学,2024,40(09):75-87.
ZHUGE Bin,WANG Ying,XIAO Mengfan,et al.A multi-feature fusion exercise recommendation model based on knowledge tracing machines[J].Telecommunications Science,2024,40(09):75-87.
诸葛斌,汪盈,肖梦凡等.基于知识追踪机的多特征融合习题推荐模型[J].电信科学,2024,40(09):75-87. DOI: 10.11959/j.issn.1000-0801.2024210.
ZHUGE Bin,WANG Ying,XIAO Mengfan,et al.A multi-feature fusion exercise recommendation model based on knowledge tracing machines[J].Telecommunications Science,2024,40(09):75-87. DOI: 10.11959/j.issn.1000-0801.2024210.
个性化习题推荐是智慧教育个性化服务领域的重要课题,然而传统的习题推荐算法对于学生特征的研究不够彻底,对于学生知识掌握与答题行为之间的关联信息挖掘未能充分,导致推荐精准度不佳。为解决上述问题,结合知识追踪机(KTM)和基于用户的协同过滤算法,提出一种基于KTM多特征融合的习题推荐模型SKT-MFER。该模型首先构造了一个融入学生学习行为和学习能力的知识追踪模型KTM-LC,精准挖掘学生的知识掌握水平;接着设置两次筛选,先利用知识点掌握矩阵初步筛选出相似的学生,再根据认知状态相似度和习题难度相似度组合而成的综合相似度进行二次筛选,双重过滤以保障习题推荐的准确度。通过广泛的实验证明,所提方法相比于一些现有的基线模型有更好的效果。
The subject of personalized exercise recommendation holds significant relevance within the domain of personalized services in smart education. Nevertheless
traditional algorithms have often lacked a deep understanding of student characteristics and failed to adequately explore the relationship between knowledge mastery and question-answering behaviors
leading to low recommendation accuracy. To address these issues
combining the knowledge tracing machine and the user-based collaborative filtering algorithm
as a KTM-based multi-feature fusion exercise recommendation model
SKT-MFER was proposed. Firstly
as a knowledge tracking model
KTM-LC
incorporating student learning behaviors and learning abilities
was constructed to accurately assess the student’s knowledge mastery level. Subsequently
two filters were implemented to ensure the exercise recommendation’s accuracy: the first was an initial screening utilizing the knowledge point mastery matrix to eliminate students who were similar to the target student
and the second was a filtering process considering the combined similarity of cognitive state similarity and exercise difficulty similarity. Through extensive experiments
it proves that the proposed method yields better results than some existing baseline models.
叶俊民 , 宋家琦 , 张珂 , 等 . 一种知识图谱增强的在线评测系统习题推荐算法研究 [J ] . 小型微型计算机系统 , 2023 ( 11 ): 44 .
YE J M , SONG J Q , ZHANG K , et al . A problem recommendation algorithm for online assessment system based on knowledge map enhancement [J ] . Journal of Chinese Computer Systems , 2023 ( 11 ): 44 .
诸葛斌 , 尹正虎 , 斯文学 , 等 . 基于学生知识追踪的多指标习题推荐算法 [J ] . 电信科学 , 2022 , 38 ( 9 ): 129 - 143 .
ZHUGE B , YIN Z H , SI W X , et al . A multi-index problem recommendation algorithm based on student knowledge tracing [J ] . Telecommunications Science , 2022 , 38 ( 9 ): 129 - 143 .
VIE J J , KASHIMA H . Knowledge tracing machines: factorization machines for knowledge tracing [C ] // Proceedings of the National Conference on Artificial Intelligence . Association for the Advancement of Artificial Intelligence (AAAI) .[ S .I.:s.n. ] , 2019 .
PAVLIK P I , CEN H , KOEDINGER K R . Performance factors analysis - a new alternative to knowledge tracing [C ] // Proceedings of the Conference on Artificial Intelligence in Education: Building Learning Systems that Care: from Knowledge Representation to Affective Modelling . Amsterdam : IOS Press , 2009 .
HERLOCKER J L , KONSTAN J A , BORCHERS A , et al . An algorithmic framework for performing collaborative filtering [J ] . ACM , 1999 .
CORBETT A T , ANDERSON J R . Knowledge tracing: modeling the acquisition of procedural knowledge [J ] . User Modeling and User-Adapted Interaction , 4 ( 4 ): 253 - 278 .
PIECH C , SPENCER J , HUANG J , et al . Deep knowledge tracing [J ] . Computer Science , 2015 , 3 ( 3 ): 19 - 23 .
LEE Y , CHOI Y , CHO J , et al . Creating a neural pedagogical agent by jointly learning to review and assess [J ] . 2019 .
LIU Q , HUANG Z , YIN Y , et al . EKT: exercise-aware knowledge tracing for student performance prediction [J ] . IEEE Transactions on Knowledge and Data Engineering , 2019 .
ZHANG J , SHI X , KING I , et al . Dynamic key-value memory networks for knowledge tracing [J ] . International World Wide Web Conferences Steering Committee , 2017 : 765 - 774 .
艾方哲 . 基于知识追踪的智能导学算法设计 [D ] . 北京 : 北京交通大学 , 2019 .
AI F Z . Design of intelligent tutoring algorithm based on knowledge tracing [D ] . Beijing : Beijing Jiaotong University , 2019 .
YANG S , ZHU M , HOU J , et al . Deep knowledge tracing with convolutions [J ] . 2020 . arXiv preprint arXiv: 2008.01169 .
NAKAGAWA H , IWASAWA Y , MATSUO Y . Graph-based knowledge tracing: modeling student proficiency using graph neural network [C ] // Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence . New York : ACM Press , 2019 .
GHOSH A , HEFFERNAN N , LAN A S . Context-aware attentive knowledge tracing [C ] // Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining . New York : ACM Press , 2020 : 2330 - 2339 .
GUO X , HUANG Z , GAO J , et al . Enhancing knowledge tracing via adversarial training [C ] // Proceedings of the 29th ACM International Conference on Multimedia . New York : ACM Press , 2021 : 367 - 375 .
SHEN S H , HUANG Z Y , LIU Q , et al . Assessing student's dynamic knowledge state by exploring the question difficulty effect [C ] // Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR '22) . New York : ACM Press , 2022 : 427 – 437 .
CHEN J H , LIU Z T , HUANG S Y , et al . Improving interpretability of deep sequential knowledge tracing models with question-centric cognitive representation [J ] 2023 , arxiv.org/abs/2302.06885 .
LIU Z T , LIU Q Q , CHEN J H , et al . Enhancing deep knowledge tracing with auxiliary tasks [C ] // Proceedings of the ACM Web Conference 2023 (WWW'23). New York: ACM Press, 2023 : 4178 - 4187 .
HUANG R , LU R . Research on content-based MOOC recommender model [C ] // Proceedings of the 2018 5th International Conference on Systems and Informatics(ICSAI) . Piscataway : IEEE Press , 2018 : 676 - 681 .
CAMPOS R , DOS S R P , OLIVEIRA J . A recommendation system based on knowledge gap identification in MOOCs ecosystems [C ] //Proceedings of the XVI Brazilian Symposium on Information Systems. [S.I.:s.n. ] , 2020 : 1 - 8 .
柏茂林 . 基于协同过滤的数学习题个性化推荐系统的设计与实现 [D ] . 锦州 : 渤海大学 , 2018 .
BAI M L . Design and implementation of personalized recommendation system for mathematical exercises based on collaborative filtering [D ] . Jinzhou : Bohai University , 2018 .
付兴华 . 基于协同过滤算法的移动学习系统的设计与实现 [D ] . 北京 : 北京工业大学 , 2017 .
FU X H . Design and implementation of mobile learning system based on collaborative filtering algorithm [D ] . Beijing : Beijing University of Technology , 2017 .
吴云峰 , 冯筠 , 孙霞 , 等 . 基于多分类器的迁移 Bagging 习题推荐 [J ] . 计算机应用 , 2013 , 33 ( 7 ): 1950 - 1954 .
WU Y F , FENG J , SUN X , et al . Recommendation of migrating Bagging problem based on multiple classifiers [J ] . Journal of Computer Applications , 2013 , 33 ( 7 ): 1950 - 1954 .
WU D , LU J , ZHANG G . A fuzzy tree matching-based personalized e-learning recommender system [J ] . IEEE Transactions on Fuzzy Systems , 2015 , 23 ( 6 ): 2412 - 2426 .
田保军 , 刘爽 , 房建东 . 融合主题信息和卷积神经网络的混合推荐算法 [J ] . 计算机应用 , 2020 , 40 ( 7 ): 1901 - 1907 .
TIAN B J , LIU S , FANG J D . Hybrid recommendation algorithm that combines subject information and convolutional neural network [J ] . Journal of Computer Applications , 2020 , 40 ( 7 ): 1901 - 1907 .
LIU J , YIN C , LI Y , et al . Deep learning and collaborative filtering-based methods for student’performance prediction and course recommendation [J ] . Wireless Communications and Mobile Computing , 2021 ( 9 ): 1 - 13 .
李晓光 , 魏思齐 , 张昕 , 等 . LFKT: 学习与遗忘融合的深度知识追踪模型 [J ] . 软件学报 , 2021 , 32 ( 3 ): 818 - 830 .
LI X G , WEI S Q , ZHANG X , et al . LFKT: deep knowledge tracing model integrating learning and forgetting [J ] . Journal of Software , 2021 , 32 ( 3 ): 818 - 830 .
马骁睿 , 徐圆 , 朱群雄 . 一种结合深度知识追踪的个性化习题推荐方法 [J ] . 小型微型计算机系统 , 2020 , 41 ( 5 ): 990 - 995 .
MA X R , XU Y , ZHU Q X . A personalized exercise recommendation method combined with depth knowledge tracing [J ] . Journal of Chinese Computer Systems , 2020 , 41 ( 5 ): 990 - 995 .
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构