浏览全部资源
扫码关注微信
北京邮电大学网络与交换技术全国重点实验室,北京 100876
[ "季铄(2000- ),男,北京邮电大学网络与交换技术全国重点实验室硕士生,主要研究方向为低轨卫星通信。" ]
[ "孙耀华(1992- ),男,博士,北京邮电大学副教授,主要研究方向为低轨卫星通信和无线接入网络智能化。" ]
[ "彭木根(1978- ),男,博士,北京邮电大学教授,主要研究方向为空间信息通信、通感算一体化、雾无线接入网络等。" ]
收稿日期:2024-04-03,
修回日期:2024-09-23,
纸质出版日期:2024-10-20
移动端阅览
季铄,孙耀华,彭木根.基于信道状态智能预测的星地自适应调制编码技术研究[J].电信科学,2024,40(10):1-13.
JI Shuo,SUN Yaohua,PENG Mugen.Research on satellite-ground adaptive modulation and coding techniques based on intellgent prediclion of channel state[J].Telecommunications Science,2024,40(10):1-13.
季铄,孙耀华,彭木根.基于信道状态智能预测的星地自适应调制编码技术研究[J].电信科学,2024,40(10):1-13. DOI: 10.11959/j.issn.1000-0801.2024214.
JI Shuo,SUN Yaohua,PENG Mugen.Research on satellite-ground adaptive modulation and coding techniques based on intellgent prediclion of channel state[J].Telecommunications Science,2024,40(10):1-13. DOI: 10.11959/j.issn.1000-0801.2024214.
在手机直连低轨卫星场景中,针对自适应调制编码技术依赖的信道质量指示信息非实时反馈的问题,提出一种基于深层回声状态网络的信道状态预测模型,并根据该预测模型提出一种调制编码方式智能选择机制,即发送端基于信道预测结果选择适应当前信道的调制编码方式。仿真验证表明,基于信道预测的自适应调制编码可以在一定程度上提升链路的误码性能。
In the scenario of direct mobile phone connection to low-earth orbit satellites
to address the issue of non-real-time feedback of channel quality indication information that adaptive modulation and coding techniques rely on
a channel state prediction model based on deep echo state network was proposed. Furthermore
an intelligent selection mechanism for modulation and coding schemes was introduced based on the prediction model
wherein the transmitter selects the modulation and coding scheme suited for the current channel conditions based on the channel prediction results. Simulation validation has demonstrated that adaptive modulation and coding based on channel prediction can improve the bit error performance of the link to a certain extent.
EVANS B , WERNER M , LUTZ E , et al . Integration of satellite and terrestrial systems in future multimedia communications [J ] . IEEE Wireless Communications , 2005 , 12 ( 5 ): 72 - 80 .
SUN Y H , PENG M G , ZHANG S J , et al . Integrated satellite-terrestrial networks: architectures, key techniques, and experimental progress [J ] . IEEE Network , 2022 , 36 ( 6 ): 191 - 198 .
彭木根 , 张世杰 , 许宏涛 , 等 . 低轨卫星通信遥感融合:架构、技术与试验 [J ] . 电信科学 , 2022 , 38 ( 1 ): 13 - 24 .
PENG M G , ZHANG S J , XU H T , et al . Communication and remote sensing integrated LEO satellites:architecture, technologies and experiment [J ] . Telecommunications Science , 2022 , 38 ( 1 ): 13 - 24 .
王艳峰 , 谷林海 , 刘鸿鹏 . 低轨卫星移动通信现状与未来发展 [J ] . 通信技术 , 2020 , 53 ( 10 ): 2447 - 2453 .
WANG Y F , GU L H , LIU H P . Status quo and future development of LEO satellite mobile communication [J ] . Communications Technology , 2020 , 53 ( 10 ): 2447 - 2453 .
ZHU J F , SUN Y H , PENG M G . Beam management in low earth orbit satellite networks with random traffic arrival and time-varying topology [J ] . IEEE Transactions on Vehicular Technology , 2024 , PP( 99 ): 1 - 16 .
孙耀华 , 彭木根 . 面向手机直连的低轨卫星通信: 关键技术、发展现状与未来展望 [J ] . 电信科学 , 2023 , 39 ( 2 ): 25 - 36 .
SUN Y H , PENG M G . Low earth orbit satellite communication supporting direct connection with mobile phones: key technologies, recent progress and future directions [J ] . Telecommunications Science , 2023 , 39 ( 2 ): 25 - 36 .
孙耀华 , 许宏涛 , 彭木根 . 手机直连低轨卫星通信: 架构、关键技术和未来展望 [J ] . 移动通信 , 2024 , 48 ( 1 ): 103 - 110 .
SUN Y H , XU H T , PENG M G . Direct-to-mobile low earth orbit satellite communication: architecture, key technologies, and future perspective [J ] . Mobile Communications , 2024 , 48 ( 1 ): 103 - 110 .
YUAN S , SUN Y H , PENG M G , et al . Joint beam direction control and radio resource allocation in dynamic multi-beam LEO satellite networks [J ] . IEEE Transactions on Vehicular Technology , 2024 , 73 ( 6 ): 8222 - 8237 .
TOMASSO K C . Wide area network access management computer : US20160191566 [P ] . 2016-06-30 .
SPEIDEL T R , BUVARP A , LIU J . Receiver-based computation of transmitter parameters and state for communications beyond design ranges of a cellular network protocol : US20220038849 [P ] . 2022-02-03 .
SPEIDEL T R , MILLER C E . Method for interference minimization and optimization of orbital mobile cellular services : US20220368411 [P ] . 2022-11-17 .
3GPP. Solutions for NR to support non-terrestrial networks(NTN): TR 38.821 v16.0.0 [S ] . 2019 .
RICO-ALVARIÑO A , ARNAU J , MOSQUERA C . Link adaptation in mobile satellite links: schemes for different degrees of CSI knowledge [J ] . International Journal of Satellite Communications and Networking , 2016 , 34 ( 5 ): 679 - 694 .
ZHU J F , SUN Y H , PENG M G . Timing advance estimation in low earth orbit satellite networks [J ] . IEEE Transactions on Vehicular Technology , 2024 , 73 ( 3 ): 4366 - 4382 .
QU Z C , ZHANG G X , CAO H T , et al . LEO satellite constellation for Internet of Things [J ] . IEEE Access , 2017 ( 5 ): 18391 - 18401 .
陈甄 , 张毅 , 肖琨 . 自适应系统中基于场景的信噪比预测算法 [J ] . 通信技术 , 2014 , 47 ( 3 ): 247 - 252 .
CHEN Z , ZHANG Y , XIAO K . Scenario-based SNR prediction method in adaptive system [J ] . Communications Technology , 2014 , 47 ( 3 ): 247 - 252 .
GUNNARSSON F , BLOM J , GUSTAFSSON F . Power control in cellular systems subject to constraints and time delays [C ] // Proceedings of the IEEE GLOBECOM 1998 . Piscataway : IEEE Press , 2002 : 3645 - 3650 .
PAPAGIANNAKI K , TAFT N , ZHANG Z L , et al . Long-term forecasting of Internet backbone traffic: observations and initial models [C ] // Proceedings of the IEEE INFOCOM 2003 . Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies . Piscataway : IEEE Press , 2003 : 1178 - 1188 .
KHASHEI M , BIJARI M . Fuzzy artificial neural network (p, d, q) model for incomplete financial time series forecasting [J ] . Journal of Intelligent & Fuzzy Systems , 2014 , 26 ( 2 ): 831 - 845 .
WANG J , TANG J , XU Z Y , et al . Spatiotemporal modeling and prediction in cellular networks: a big data enabled deep learning approach [C ] // Proceedings of the IEEE INFOCOM 2017 - IEEE Conference on Computer Communications . Piscataway : IEEE Press , 2017 : 1 - 9 .
DING T B , HIROSE A . Fading channel prediction based on combination of complex-valued neural networks and chirp Z-transform [J ] . IEEE Transactions on Neural Networks and Learning Systems , 2014 , 25 ( 9 ): 1686 - 1695 .
YUAN J D , NGO H Q , MATTHAIOU M . Machine learning-based channel prediction in massive MIMO with channel aging [J ] . IEEE Transactions on Wireless Communications , 2020 , 19 ( 5 ): 2960 - 2973 .
JAEGER H . Reservoir riddles: suggestions for echo state network research [C ] // Proceedings of the Proceedings of 2005 IEEE International Joint Conference on Neural Networks . Piscataway : IEEE Press , 2005 : 1460 - 1462 .
SUN C X , SONG M X , CAI D R , et al . A systematic review of echo state networks from design to application [J ] . IEEE Transactions on Artificial Intelligence , 2024 , 5 ( 1 ): 23 - 37 .
GALLICCHIO C , MICHELI A . Deep echo state network (DeepESN): a brief survey [J ] . arXiv preprint arXiv: 1712.04323 , 2017 .
彭宇 , 王建民 , 彭喜元 . 储备池计算概述 [J ] . 电子学报 , 2011 , 39 ( 10 ): 2387 - 2396 .
PENG Y , WANG J M , PENG X Y . Survey on reservoir computing [J ] . Acta Electronica Sinica , 2011 , 39 ( 10 ): 2387 - 2396 .
0
浏览量
576
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构