浏览全部资源
扫码关注微信
中国计量大学机电工程学院,浙江 杭州 310018
[ "罗景雪(1999- ),女,中国计量大学机电工程学院硕士生,主要研究方向为毫米波雷达信号处理、生命体征监测。" ]
[ "张远辉(1982- ),男,博士,中国计量大学机电工程学院副教授,主要研究方向为毫米波雷达算法、图像处理技术。" ]
[ "戴潇(1999- ),男,中国计量大学机电工程学院硕士生,主要研究方向为毫米波雷达信号处理。" ]
[ "付铎(1992- ),男,博士,中国计量大学机电工程学院讲师,主要研究方向为不确定机械系统的动力学控制、汽车路径规划。" ]
[ "刘康(1977- ),男,博士,中国计量大学机电工程学院教授,主要研究方向为毫米波雷达与无人驾驶技术。" ]
收稿日期:2024-08-16,
修回日期:2024-10-09,
纸质出版日期:2024-11-20
移动端阅览
罗景雪,张远辉,戴潇等.基于毫米波雷达的非接触式心电重构算法[J].电信科学,2024,40(11):50-65.
LUO Jingxue,ZHANG Yuanhui,DAI Xiao,et al.Non-contact ECG reconstruction algorithm based on millimeter wave radar[J].Telecommunications Science,2024,40(11):50-65.
罗景雪,张远辉,戴潇等.基于毫米波雷达的非接触式心电重构算法[J].电信科学,2024,40(11):50-65. DOI: 10.11959/j.issn.1000-0801.2024238.
LUO Jingxue,ZHANG Yuanhui,DAI Xiao,et al.Non-contact ECG reconstruction algorithm based on millimeter wave radar[J].Telecommunications Science,2024,40(11):50-65. DOI: 10.11959/j.issn.1000-0801.2024238.
近年来,毫米波雷达信号在医疗监测领域的应用日益广泛,实现雷达信号到心电信号的精准映射已成为满足日常持续性非接触心电监测需求的关键挑战。详细介绍了毫米波雷达信号处理流程,探索了雷达信号与心电信号的细粒度映射关系,引入基于卷积块注意力机制模块(convolutional block attention module,CBAM)的卷积自编码器(convolutional autoencoder,CAE)与双向长短期记忆(bidirectional long short-term memory,BiLSTM)组合的CAE-BiLSTM深度学习网络,实现了雷达信号到心电图的非线性转换。实验结果表明,所提方法在形态学精度上的中位数为0.92,特征峰预测误差低于50 ms,显著增强了雷达信号与心电信号的映射关系,为非接触式心电信号的生成提供了新思路。
With the wide application of millimeter-wave radar signals in medical monitoring
accurately mapping these signals to ECG signals has become a key challenge in meeting the needs for daily continuous non-contact ECG monitoring. The signal processing flow of millimeter-wave radar was introduced in detail
the fine-grained mapping relationship between radar signals and ECG signals was explored
and the nonlinear transformation from radar signals to electrocardiograms was achieved through the introduction of the CAE-BiLSTM deep learning network
which was a hybrid of a convolutional autoencoder (CAE) and bi-directional long short-term memory (BiLSTM)
incorporating the convolutional block attention module (CBAM).The results show that the median morphological accuracy of the proposed method is 0.92
and the feature peak prediction error is less than 50 ms. The proposed approach significantly enhances the mapping relationship between radar and ECG signals and offers a new idea for generating non-contact ECG signals.
CHOO Y J , LEE G W , MOON J S , et al . Application of non-contact sensors for health monitoring in hospitals: a narrative review [J ] . Frontiers in Medicine , 2024 ( 11 ): 1421901 .
ZHANG X , GU Y , YAN H , et al . Wital: a COTS Wi-Fi devices based vital signs monitoring system using NLOS sensing model [J ] . IEEE Transactions on Human-Machine Systems , 2023 , 53 ( 3 ): 629 - 641 .
AHMAD TARMIZI S S , SURIANI N S , RASHID F N . A review of facial thermography assessment for vital signs estimation [J ] . IEEE Access , 2022 ( 10 ): 115583 - 115602 .
MOADI A K , JOSHI M , KILIC O , et al . Low cost IR-UWB radar for multisubject non-contact vital sign detection [C ] // Proceedings of the 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI) . Piscataway : IEEE Press , 2021 : 135 - 136 .
BRESNAHAN D G , LI Y . Measurement of multiple simultaneous human vital signs using a millimeter-wave FMCW radar [C ] // Proceedings of the 2022 IEEE Radar Conference (RadarConf22) . Piscataway : IEEE Press , 2022 : 1 - 5 .
HA U , ASSANA S , ADIB F . Contactless seismocardiography via deep learning radars [C ] // Proceedings of the 26th Annual International Conference on Mobile Computing and Networking . New York : ACM Press , 2020 : 1 - 14 .
YU Z T , PENG W , LI X B , et al . Remote heart rate measurement from highly compressed facial videos: an end-to-end deep learning solution with video enhancement [C ] // Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV) . Piscataway : IEEE Press , 2019 : 151 - 160 .
XU C H , LI H N , LI Z X , et al . CardiacWave [J ] . Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies , 2021 , 5 ( 3 ): 1 - 26 .
DONG S Q , ZHANG Y , MA C , et al . Doppler cardiogram: a remote detection of human heart activities [J ] . IEEE Transactions on Microwave Theory and Techniques , 2020 , 68 ( 3 ): 1132 - 1141 .
GOUVEIA C , ALBUQUERQUE D F , PINHO P , et al . Bio-radar cardiac signal model used for HRV assessment and evaluation using adaptive filtering [J ] . IEEE Transactions on Instrumentation and Measurement , 2022 ( 71 ): 8503810 .
CHEN J B , ZHANG D H , WU Z , et al . Contactless electrocardiogram monitoring with millimeter wave radar [J ] . IEEE Transactions on Mobile Computing , 2024 , 23 ( 1 ): 270 - 285 .
WU Y X , NI H C , MAO C L , et al . Contactless reconstruction of ECG and respiration signals with mmWave radar based on RSSRnet [J ] . IEEE Sensors Journal , 2024 , 24 ( 5 ): 6358 - 6368 .
YAMAMOTO K , HIROMATSU R , OHTSUKI T . ECG signal reconstruction via Doppler sensor by hybrid deep learning model with CNN and LSTM [J ] . IEEE Access , 2020 ( 8 ): 130551 - 130560 .
YAO Y , SUN G H , KIRIMOTO T , et al . Extracting cardiac information from medical radar using locally projective adaptive signal separation [J ] . Frontiers in Physiology , 2019 ( 10 ): 568 .
潘良 , 刘康 , 张远辉 . 基于FMCW雷达的多目标生命体征信号检测 [J ] . 计量学报 , 2024 , 45 ( 1 ): 112 - 120 .
PAN L , LIU K , ZHANG Y H . Multi-target vital sign detection based on FMCW radar [J ] . Acta Metrologica Sinica , 2024 , 45 ( 1 ): 112 - 120 .
DUAN M R , HU Q , ZANG T , et al . Wavelet-ARMA-based short-term drift calibration of IMU position on human lower limbs [J ] . IEEE Sensors Journal , 2023 , 23 ( 14 ): 15773 - 15785 .
ZHANG S J , ZHENG T Y , CHEN Z , et al . Can we obtain fine-grained heartbeat waveform via contact-free RF-sensing? [C ] // Proceedings of the IEEE INFOCOM 2022 - IEEE Conference on Computer Communications . Piscataway : IEEE Press , 2022 : 1759 - 1768 .
VASWANI A , SHAZEER N , PARMAR N , et al . Attention Is All You Need [C ] // 31st Conference on Neural Information Processing Systems , Long Beach, CA . California : NIPS , 2017 : 5998 - 6008 .
RONNEBERGER O , FISCHER P , BROX T . U-net: convolutional networks for biomedical image segmentation [C ] // Medical Image Computing and Computer-Assisted Intervention-MICCAI . Cham : Springer International Publishing AG Switzerland , 2015 : 234 - 241 .
EDANAMI K , SUN G H . Medical radar signal dataset for non-contact respiration and heart rate measurement [J ] . Data in Brief , 2021 ( 40 ): 107724 .
ZHANG H , JIAN P , YAO Y C , et al . Radar-Beat: Contactless beat-by-beat heart rate monitoring for life scenes [J ] . Biomedical Signal Processing and Control , 2023 ( 86 ): 105360 .
MAKOWSKI D , PHAM T , LAU Z J , et al . NeuroKit2: a Python toolbox for neurophysiological signal processing [J ] . Behavior Research Methods , 2021 , 53 ( 4 ): 1689 - 1696 .
0
浏览量
11
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构