浏览全部资源
扫码关注微信
1.国网青海省电力公司,青海 西宁 810008
2.北京中电普华信息技术有限公司,北京 100192
[ "薛晓慧(1971- ),女,国网青海省电力公司高级工程师,主要从事电网信息化应用、用电信息采集等工作。" ]
[ "张文(1973- ),男,北京中电普华信息技术有限公司高级工程师,主要从事电力市场营销、电力信息化等工作。" ]
张静(1987− ),女,北京中电普华信息技术有限公司高级工程师,主要从事电力营销数据分析、机器学习等工作。jingzh1036@163.com
陈雁(1981- ),女,北京中电普华信息技术有限公司高级工程师,主要从事电网大数据、人工智能应用等工作。
周春(1983- ),男,北京中电普华信息技术有限公司高级工程师,主要从事电力工程信息化、人工智能应用等工作。
陈亮(1979- ),男,北京中电普华信息技术有限公司高级项目管理师,主要从事电力工程信息化、项目管理等工作。
曹增伟(1984- ),男,北京中电普华信息技术有限公司工程师,主要从事电力市场营销、人工智能应用等工作。
收稿日期:2024-10-16,
修回日期:2024-12-09,
纸质出版日期:2025-01-20
移动端阅览
薛晓慧,张文,张静等.基于二次聚类的充电桩执行电价异常检测方法[J].电信科学,2025,41(01):184-190.
XUE Xiaohui,ZHANG Wen,ZHANG Jing,et al.A method for detecting abnormal electricity prices at charging stations based on two rounds of clustering[J].Telecommunications Science,2025,41(01):184-190.
薛晓慧,张文,张静等.基于二次聚类的充电桩执行电价异常检测方法[J].电信科学,2025,41(01):184-190. DOI: 10.11959/j.issn.1000-0801.2025004.
XUE Xiaohui,ZHANG Wen,ZHANG Jing,et al.A method for detecting abnormal electricity prices at charging stations based on two rounds of clustering[J].Telecommunications Science,2025,41(01):184-190. DOI: 10.11959/j.issn.1000-0801.2025004.
由于电价政策复杂,执行环节多,监管难度大,电价执行错误现象时有发生,这不仅损害电力市场的公平性和效率,也影响电力企业的经济效益和用户的用电成
本。提出了一种基于二次聚类的充电桩执行电价异常检测方法,首先进行电价执行异常分类及用电特征分析,其次通过
K
-means聚类算法剥离出电瓶车用户,进而在第二次聚类中采用含噪声应用的基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法精确识别高价低接等更为复杂的违约情况。所提方法通过两次聚类分析,提高电价执行的准确性和效率,具有一定的理论意义和应用价值。
Due to the complexity of electricity pricing policies
multiple implementation steps
and difficulty in regulation
errors in electricity pricing implementation occur from time to time. This not only damages the fairness and efficiency of the electricity market but also affects the economic benefits of power enterprises and the electricity costs of users. A method was proposed for detecting electricity price anomalies at charging stations based on secondary clustering. Firstly
the electricity price anomalies were classified and the electricity consumption characteristics were analyzed. Secondly
the
K
-means clustering algorithm was used to extract electric vehicle users. Then
in the second clustering
the density-based spatial clustering of applications with noise (DBSCAN) algorithm was used to accurately identify more complex default situations
such as high price and low connection. The proposed method improves the accuracy and efficiency of electricity price implementation through two rounds of cluster analysis
and has certain theoretical significance and application value.
赵云龙 , 孔庚 , 李卓然 , 等 . 全球能源转型及我国能源革命战略系统分析 [J ] . 中国工程科学 , 2021 , 23 ( 1 ): 15 - 23 .
ZHAO Y L , KONG G , LI Z R , et al . Strategic analysis of global energy transition and China’s energy revolution [J ] . Strategic Study of CAE , 2021 , 23 ( 1 ): 15 - 23 .
黄学良 , 刘永东 , 沈斐 , 等 . 电动汽车与电网互动: 综述与展望 [J ] . 电力系统自动化 , 2024 , 48 ( 7 ): 3 - 23 .
HUANG X L , LIU Y D , SHEN F , et al . Vehicle to grid: review and prospect [J ] . Automation of Electric Power Systems , 2024 , 48 ( 7 ): 3 - 23 .
杨镜司 , 秦文萍 , 史文龙 , 等 . 基于电动汽车参与调峰定价策略的区域电网两阶段优化调度 [J ] . 电工技术学报 , 2022 , 37 ( 1 ): 58 - 71 .
YANG J S , QIN W P , SHI W L , et al . Two-stage optimal dispatching of regional power grid based on electric vehicles' participation in peak-shaving pricing strategy [J ] . Transactions of China Electrotechnical Society , 2022 , 37 ( 1 ): 58 - 71 .
李锦辉 , 吴毓峰 , 余涛 , 等 . 数据孤岛下基于联邦学习的用户电价响应刻画及其应用 [J ] . 电力系统保护与控制 , 2024 , 52 ( 6 ): 164 - 176 .
LI J H , WU Y F , YU T , et al . Characterization of user price response behavior and its application based on federated learning considering a data island [J ] . Power System Protection and Control , 2024 , 52 ( 6 ): 164 - 176 .
朱峰 , 单超 , 吴宁 , 等 . 电力市场环境下电力用户电价特征提取和异常识别方法 [J ] . 上海交通大学学报 , 2024 : 1 - 23 .
ZHU F , SHAN C , WU N , et al . Electricity price feature extraction and abnormal identification method for power users in the electricity market environment [J ] . Journal of Shanghai Jiao Tong University , 2024 : 1 - 23 .
谢敬东 , 卢浩哲 , 陆池鑫 , 等 . 基于分阶段离群点检测的电力市场异常辨识 [J ] . 科学技术与工程 , 2021 , 21 ( 9 ): 3633 - 3641 .
XIE J D , LU H Z , LU C X , et al . Identification of abnormal behavior in power market based on phased outlier detection [J ] . Science Technology and Engineering , 2021 , 21 ( 9 ): 3633 - 3641 .
王威 , 王兰君 . 基于用电行为特征大数据的异常用户识别模型研究与应用 [J ] . 电力大数据 , 2021 , 24 ( 12 ): 19 - 26 .
WANG W , WANG L J . Research and application of abnormal user identification model based on big data of electricity behavior characteristics [J ] . Power Systems and Big Data , 2021 , 24 ( 12 ): 19 - 26 .
刘宣 , 唐悦 , 卢继哲 , 等 . 基于概率预测的用电采集终端电量异常在线实时识别方法 [J ] . 电力系统保护与控制 , 2021 , 49 ( 19 ): 99 - 106 .
LIU X , TANG Y , LU J Z , et al . Online real time anomaly recognition method for power consumption of electric energy data acquisition terminal based on probability prediction [J ] . Power System Protection and Control , 2021 , 49 ( 19 ): 99 - 106 .
张小斐 , 耿俊成 , 孙玉宝 . 图正则非线性岭回归模型的异常用电行为识别 [J ] . 计算机工程 , 2018 , 44 ( 6 ): 8 - 12 .
ZHANG X F , GENG J C , SUN Y B . Abnormal electricity behavior recognition of graph regularization nonlinear ridge regression model [J ] . Computer Engineering , 2018 , 44 ( 6 ): 8 - 12 .
钱旭盛 , 朱萌 , 翟千惠 , 等 . 基于改进孤立森林算法的异常用电行为识别方法 [J ] . 沈阳工业大学学报 , 2023 , 45 ( 6 ): 601 - 606 .
QIAN X S , ZHU M , ZHAI Q H , et al . Abnormal electrical behavior recognition method based on improved isolated forest algorithm [J ] . Journal of Shenyang University of Technology , 2023 , 45 ( 6 ): 601 - 606 .
万伟 , 刘红旗 , 孙洪昌 , 等 . 用电异常行为预警方法 [J ] . 哈尔滨理工大学学报 , 2022 , 27 ( 4 ): 53 - 62 .
WAN W , LIU H Q , SUN H C , et al . Early warning method of abnormal electricity consumption behavior based on data driven [J ] . Journal of Harbin University of Science and Technology , 2022 , 27 ( 4 ): 53 - 62 .
彭显刚 , 林利祥 , 刘艺 , 等 . 数据挖掘技术在电价执行稽查中的应用研究 [J ] . 电气应用 , 2016 , 35 ( 11 ): 62 - 67 .
PENG X G , LIN L X , LIU Y , et al . Research on the application of data mining technology in electricity price execution inspection [J ] . Electrotechnical Application , 2016 , 35 ( 11 ): 62 - 67 .
路洁 , 郑小贤 , 杨辉 , 等 . 基于时序数据挖掘的电价执行异常分析模型设计 [J ] . 自动化技术与应用 , 2022 , 41 ( 5 ): 171 - 174 .
LU J , ZHENG X X , YANG H , et al . Design of electricity price execution anomaly analysis model based on time series data mining [J ] . Techniques of Automation and Applications , 2022 , 41 ( 5 ): 171 - 174 .
万磊 , 陈成 , 黄文杰 , 等 . 基于BRB和LSTM网络的电力大数据用电异常检测方法 [J ] . 电力建设 , 2021 , 42 ( 8 ): 38 - 45 .
WAN L , CHEN C , HUANG W J , et al . Power abnormity detection method based on power big data applying BRB and LSTM network [J ] . Electric Power Construction , 2021 , 42 ( 8 ): 38 - 45 .
周志华 . 机器学习 [M ] . 北京 : 清华大学出版社 , 2016 .
ZHOU Z H . Machine learning [M ] . Beijing : Tsinghua University Press , 2016 .
0
浏览量
65
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构